含风电-光伏-光热电站电力系统N-k安全优化调度模型

简介: 含风电-光伏-光热电站电力系统N-k安全优化调度模型

1 主要内容

该程序参考《光热电站促进风电消纳的电力系统优化调度》光热电站模型,主要做的是考虑N-k安全约束的含义风电-光伏-光热电站的电力系统优化调度模型,从而体现光热电站在调度灵活性以及经济性方面的优势。同时代码还考虑了光热电站对风光消纳的作用,对比了含义光热电站和不含光热电站下的弃风弃光问题,同时还对比了考虑N-k约束下的调度策略区别。以14节点和118节点算例为例,对模型进行了系统性的测试,复现效果良好,是学习N-k约束以及光热电站调度的必备程序!程序采用matlab+cplex(mosek/gurobi)进行求解,可以选择已经安装的求解器进行求解。

  • 程序算例

程序对于118节点系统采用了四个算例进行对比,14节点系统有3种算例对比,并增加了弃风量的对比程序。
  • 程序模型

  • 程序亮点
  1. 采用光热电站模型,也是最近研究比较热的一个方向。
  2. 采用转移分布因子矩阵处理潮流问题,这也是很多文献中都采用的方法。

2 部分程序

clc; clear; close all; % 关闭所有已打开的绘图窗口
%% 参数设定
NT = 24; % 时间范围
CoeffReseve_load = 0.03; 
CoeffReserve_VRE = 0.05; 
yita_TES = 0.98;  
yita_PB = 0.415;  
% 文章里Table 2的数据
Capacity_TES_CSP = 0; 
initial_TES_t0 = 0.5;  
initial_TES_t1 = 0.78;
TES_initial = 0.5;         
beta_Load = 3*10e3;  
    mpc = case14_1; % 载入数据 matpower 数据格式
%% 有功负荷 24h所有节点总的
%    mpc.load = [
%        2842.42  3020.2  3296.96  3444.44  3607.07  3891.91  4070.7  4295.95  4476.76  4661.61  4859.59  5077.77  ...
%        4717.17  4519.19  4301.01  3995.95  3703.03  3806.06  4037.37  4063.63  3721.21  3245.45  3097.97  2827.27
%    ]/6.3; 
   mpc.load = [
       683.42  792.2  896.96  1044.44  1087.07  1121.91  1200.7  1235.95  1326.76  1461.61  1489.59  1577.77  ...
       1417.17  1219.19  1101.01  1075.95  903.03  1186.06  1237.37  1463.63  1221.21  1005.45  827.97  807.27
    ]/2; 
    mpc.P_RE = [0.00   0.00   0.00   0.00   0.00   0.00   15.76   43.17   82.35   109.44   122.55   146.10   ...% PV
                126.66   86.05   60.05   52.82   25.78   4.28   0.00   0.00   0.00   0.00   0.00   0.00  
                100.26   133.95   147.28   134.11   170.52   159.44   138.55   72.83   58.83   73.37   79.90   80.54 ...  % Wind
                91.96   101.68   121.49   122.93   133.11   162.44   130.95   133.25   151.26   139.33   120.60   90.33
                ]*1; % 可再生能源 24小时数据(实际发电量)
%% 电网相关名称
    baseMVA = mpc.baseMVA;
    bus = mpc.bus;
    gen = mpc.gen;
    branch = mpc.branch;
    gencost = mpc.gencost;
    RE = mpc.RE;
    CSP = mpc.CSP;
    P_RE = mpc.P_RE;
N = length(bus(:,1));      % 网络中所有节点数
N_Br = length(branch(:,1));% 线路数
N_Gen = length(gen(:,1));  % 火电发电机组数
N_RE = length(RE(:,1));    % 可再生能源节点机组数
N_CSP = length(CSP(:,1));  % CSP发电站数
% 常规机组相关数据提取, 取数据矩阵中的列向量 和功率有功的项,均需标幺值化,以便运算和求解
P_Gen_max = gen(:,9)/baseMVA; 
P_Gen_min = gen(:,10)/baseMVA; 
type_Gen = gen(:,22); 
P_Gen_up = gen(:,23) /baseMVA;  
P_Gen_down = gen(:,24) /baseMVA;
T_Gen_min_on = gen(:,25); 
T_Gen_min_off = gen(:,26); 
c_ST_g = gen(:,28);
c_G_g = gen(:,30); 
% CSP机组相关数据提取
P_CSP_max = CSP(:,9)/baseMVA; 
P_CSP_min = CSP(:,10)/baseMVA; 
P_CSP_up = CSP(:,23)/baseMVA;   
P_CSP_down = CSP(:,24)/baseMVA; 
T_CSP_min_on = CSP(:,25); 
T_CSP_min_off = CSP(:,26);
c_CSP_g = CSP(:,30);       
PtCSP_fore = [ % 可用的太阳能热功率向量 
    0.00   0.00   0.00   0.00   0.00   0.00   190.57   390.57   790.57 990.57   1390.57   1891.03 ...
    2111.64   2200.92   2202.36   2118.26   1895.37   1408.35   0.00   0.00   0.00   0.00   0.00   0.00 ]/20;
PtCSP_fore = PtCSP_fore/baseMVA; 
P_RE = P_RE/baseMVA; % 可再生能源PV WT机组出力
beta_Load = beta_Load*baseMVA^2; % $/MWh -> $/p.u.
M_bus_G = zeros(N,N_Gen); % 发电机机组-索引矩阵
for row = 1:N
    if abs(find(mpc.gen(:,1) == row)) > 0  % 发电机节点号 与 行号对应
        M_bus_G(row,find(mpc.gen(:,1) == row)) = 1; % M_bus_G相应处置1
    end
end
M_bus_RE = zeros(N,N_RE); % 可再生能源机组-索引矩阵
for row = 1:N
    if abs(find(mpc.RE(:,1) == row))>0
        M_bus_RE(row,find(mpc.RE(:,1) == row)) = 1;
    end
end
M_bus_CSP = zeros(N,N_CSP); % CSP机组-索引矩阵
for row = 1:N
    if abs(find(mpc.CSP(:,1) == row))>0
        M_bus_CSP(row,find(mpc.CSP(:,1) == row)) = 1;
    end
end
GSDF = makePTDF(mpc); % 发电转移分布因子矩阵,表征节点注入功率在全网络的分布
%% 负荷矩阵数据,按照 算例数据mpc.bus(:,3) 中各节点负荷的比例分配
    PD = bus(:,3)/baseMVA; 
    P_factor = PD/sum(PD);
    P_sum = mpc.load/baseMVA; 
    PD = P_factor*P_sum;      
%% 决策变量命名
    PG_G = sdpvar(N_Gen,NT,'full');  
    PG_RE = sdpvar(N_RE,NT,'full');   % (风光并网量)
    PG_CSP = sdpvar(N_CSP,NT,'full'); 
    PC_Load = sdpvar(N,NT,'full');   
    
    onoff_gen = binvar(N_Gen,NT,'full');
    onoff_CSP = binvar(N_CSP,NT,'full'); 
    
    Branch = sdpvar(N_Br,NT,'full');   
    Cost_StartUp  = sdpvar(N_Gen,NT-1,'full');
    
    Pt_TES_charge = sdpvar(N_CSP,NT,'full');  
    Pt_TES_discharge= sdpvar(N_CSP,NT,'full');
    Et_TES = sdpvar(N_CSP,NT,'full');         
    
%% 约束条件列写   
    Cons = [];
    for t = 1:NT
        if t >= 2 % type(1-水电, 2-火电机组)
            for i = 1:N_Gen % 火电机组-最小启/停时间约束 式(8-9)
                if (type_Gen(i,1)==2) || (type_Gen(i,1)==5) 
                    for tao = t + 1:min(t+T_Gen_min_on(i,1)-1,NT)   
                        Cons = [Cons, onoff_gen(i,t)-onoff_gen(i,t-1) <= onoff_gen(i,tao)];
                    end
                    for tao = t + 1:min(t+T_Gen_min_off(i,1)-1,NT) 
                        Cons = [Cons, onoff_gen(i,t-1)-onoff_gen(i,t) <= 1-onoff_gen(i,tao)];
                    end
                end
            end
            for i = 1:N_CSP  
                for tao = t+1:min(t+T_CSP_min_on(i,1)-1,NT)
                    Cons = [Cons, onoff_CSP(i,t)-onoff_CSP(i,t-1) <= onoff_CSP(i,tao)]; % CSP机组最小启/停时间约束
                end
                for tao = t+1:min(t+T_CSP_min_off(i,1)-1,NT)
                    Cons = [Cons, onoff_CSP(i,t-1)-onoff_CSP(i,t) <= 1-onoff_CSP(i,tao)];
                end
            end
        end 
        if t >= 2 % 火电机组 爬坡约束 式(6-7)
            Cons = [Cons,  PG_G(:,t) - PG_G(:,t-1) <= ...
                     onoff_gen(:,t-1).* P_Gen_up*60 + ... 
                    (onoff_gen(:,t)-onoff_gen(:,t-1)) .* P_Gen_min + ... 
                    (1-onoff_gen(:,t)) .* P_Gen_max];  
            Cons = [Cons, -PG_G(:,t) + PG_G(:,t-1) <= ...
                    onoff_gen(:,t) .* P_Gen_down*60 + ...
                   (onoff_gen(:,t-1)-onoff_gen(:,t)) .* P_Gen_min + ...  
                   (1-onoff_gen(:,t-1)) .* P_Gen_max];
               
            % CSP 机组 爬坡约束 式(6-7)
            Cons = [Cons,  PG_CSP(:,t) - PG_CSP(:,t-1) <= ...
                     onoff_CSP(:,t-1).* P_CSP_up*60 + ... %  
                     (onoff_CSP(:,t)-onoff_CSP(:,t-1)) .* P_CSP_min + ...
                     (1-onoff_CSP(:,t)) .* P_CSP_max]; 
            Cons = [Cons, -PG_CSP(:,t) + PG_CSP(:,t-1) <= onoff_CSP(:,t) .* P_CSP_down*60 + ...  
                    (onoff_CSP(:,t-1)-onoff_CSP(:,t)) .* P_CSP_min + ...  
                    (1-onoff_CSP(:,t-1)) .* P_CSP_max];
        end
    end
    % 机组出力的上下边界约束-式(3) % t(1-水电,2-火电, 5-燃气发电机组 6-CSP)
  Ind_2_5 = union(find(type_Gen(:,1) == 2),find(type_Gen(:,1) == 5)); 
   Cons = [Cons, onoff_gen(Ind_2_5,:) .* (P_Gen_min(Ind_2_5,1) * ones(1,NT)) ...    
           <= PG_G(Ind_2_5,:) <= ...
          onoff_gen(Ind_2_5,:) .* (P_Gen_max(Ind_2_5,1) * ones(1,NT))];  
        
   
        
    Cons = [Cons, onoff_CSP.*(P_CSP_min*ones(1,NT)) <= PG_CSP <= onoff_CSP.*(P_CSP_max*ones(1,NT))]; % CSP机组出力-边界约束
%     Cons = [Cons, onoff_CSP == ones(1,24)]; % CSP机组 
  
    Cons = [Cons, sum(PG_G,1) + sum(PG_RE,1) + sum(PG_CSP,1) == sum(PD - PC_Load,1)]; % 式(2)
   
    Cons = [Cons, Branch == GSDF*(M_bus_G*PG_G + M_bus_RE*PG_RE + M_bus_CSP*PG_CSP - (PD-PC_Load))]; % 
%     Cons = [Cons, -branch(:,6)*ones(1,NT) <= GSDF*(M_bus_G*PG_G+M_bus_RE*PG_RE+M_bus_CSP*PG_CSP-(PD- PC_Load)) <= branch(:,6)*ones(1,NT)]; % 
    Cons = [Cons, -999*ones(N_Br,NT) <= GSDF*(M_bus_G*PG_G+M_bus_RE*PG_RE+M_bus_CSP*PG_CSP-(PD-PC_Load)) <= 999*ones(N_Br,NT)]; % 118系统有186条线路
   
    Cons = [Cons, 0 <= PG_RE <= P_RE]; % 可再生出力
 
    Cons = [Cons, [60;50;100;80;40]/baseMVA * ones(1,24) <= PG_G ];
  
    Cons = [Cons, 0 <= PC_Load <= PD]; % 式(22)    
  
    Cons = [Cons, sum(onoff_gen .* (P_Gen_max*ones(1,NT)) - PG_G,1) + ...
            sum(onoff_CSP .* (P_CSP_max*ones(1,NT)) - PG_CSP,1) >= ...
            sum(CoeffReseve_load*PD,1) + sum(CoeffReserve_VRE*PG_RE,1) ];
   
    Cons = [Cons, Cost_StartUp >= (onoff_gen(:,2:NT) - onoff_gen(:,1:NT-1)) .* (c_ST_g*ones(1,NT-1))]; % 传统机组启动成本
    Cons = [Cons, Cost_StartUp >= 0];
    
%%%%%% CSP电站运转内部约束 %%%%%%
    E_TES_max = Capacity_TES_CSP * P_CSP_max; 
   
    Cons = [Cons, PG_CSP/yita_PB + Pt_TES_charge - Pt_TES_discharge <= PtCSP_fore]; % CSP输出电功率与TES充/放热功率,预测光热功率关系
  
    Cons = [Cons, Et_TES(:,2:NT) == Et_TES(:,1:NT-1) + Pt_TES_charge(:,1:NT-1)*yita_TES - Pt_TES_discharge(:,1:NT-1)/yita_TES];
  Cons = [Cons, Et_TES(:,1) == TES_initial * E_TES_max]; 
    Cons = [Cons, Et_TES(:,1) == Et_TES(:,NT)];          
   
    Cons = [Cons, 0 <= Pt_TES_charge    <= Capacity_TES_CSP*ones(N_CSP,NT)]; 
    Cons = [Cons, 0 <= Pt_TES_discharge <= Capacity_TES_CSP*ones(N_CSP,NT)];
  
    Cons = [Cons, 0 <= Et_TES <= E_TES_max * ones(1,NT)];
%% 目标函数 
    obj = sum(c_G_g'*PG_G) + sum(c_CSP_g'*PG_CSP) + sum(sum(Cost_StartUp) + beta_Load*sum(sum(PC_Load)) ); 
    % 机组的边际发电成本 + 启动成本 + 负荷削减成本
    
    % 运行调度 
    ops = sdpsettings('solver','cplex'); %  gurobi
    ans = optimize(Cons,obj,ops)
    
%% 求解成功后取值
  PG_G = value(PG_G)  ; 
    PG_RE = value(PG_RE) ;  
    PG_CSP = value(PG_CSP) ; 
    PC_Load = value(PC_Load) ;   
    onoff_gen = value(onoff_gen) ; 
    onoff_CSP = value(onoff_CSP) ; 
    Branch = value(Branch) ;   
    Cost_StartUp  = value(Cost_StartUp);
    obj = value(obj); % 总成本
    Pt_TES_charge = value(Pt_TES_charge);   
    Pt_TES_discharge = value(Pt_TES_discharge); 
    Et_TES = value(Et_TES);                 
    
disp(['IEEE14 不考虑N-k的和无CSP的经济调度情况,运行成本为 ', num2str(obj)])
%% 绘图 
% 已知的相关输入数据
    figure
    subplot(3,1,1)
    plot(PtCSP_fore * baseMVA,'m-o');
  title('CSP预测功率值')
  xlabel('时间(h)');
    ylabel('功率(MW)');
    
    subplot(3,1,2)
    plot(P_RE(1,:) * baseMVA,'m-o'); hold on
    plot(P_RE(2,:) * baseMVA,'b-s');
  title('可再生能源预测出力值')
  xlabel('时间(h)');
    ylabel('功率(MW)');
    legend('光伏','风电')
    
    subplot(3,1,3)
    plot(sum(PD) * baseMVA,'r-v');
  title('24h负荷值')
  xlabel('时间(h)');
    ylabel('功率(MW)');
    
    
    
%    subplot(2,1,2)
%  bar(baseMVA*PG_RE',0.75,'stack'); hold on; % 各PV、Wind机组出力
%    legend('PV','Wind')
%    title('电网中可再生能源机组出力')
%  xlabel('时间(h)');
%    ylabel('功率(MW)');
    
%    figure
%    surf(baseMVA*PC_Load);
%    title('负荷削减量')
%  xlabel('时间(h)');
%    ylabel('功率(MW)');

3 部分结果

4 下载链接

相关文章
|
新能源 调度
【多微电网】含多微电网租赁共享储能的配电网博弈优化调度(Matlab代码实现)
【多微电网】含多微电网租赁共享储能的配电网博弈优化调度(Matlab代码实现)
148 0
风电最大化消纳的热电联产机组联合优化控制(Matlab代码实现)
风电最大化消纳的热电联产机组联合优化控制(Matlab代码实现)
|
运维 算法 安全
【火电机组、风能、储能】高比例风电电力系统储能运行及配置分析(Matlab代码实现)1
【火电机组、风能、储能】高比例风电电力系统储能运行及配置分析(Matlab代码实现)
249 0
【火电机组、风能、储能】高比例风电电力系统储能运行及配置分析(Matlab代码实现)1
|
算法 调度
【能量管理系统( EMS )】基于粒子群算法对光伏、蓄电池等分布式能源DG进行规模优化调度研究(Matlab代码实现)
【能量管理系统( EMS )】基于粒子群算法对光伏、蓄电池等分布式能源DG进行规模优化调度研究(Matlab代码实现)
344 0
|
算法 新能源 调度
计及新能源出力不确定性的电气设备综合能源系统协同优化(Matlab代码实现)2
计及新能源出力不确定性的电气设备综合能源系统协同优化(Matlab代码实现)2
189 0
|
算法 安全 新能源
计及新能源出力不确定性的电气设备综合能源系统协同优化(Matlab代码实现)1
计及新能源出力不确定性的电气设备综合能源系统协同优化(Matlab代码实现)
285 0
|
安全 新能源 调度
【电力系统优化调度】计及源荷两侧不确定性的含风电电力系统低碳调度(Matlab代码实现)
【电力系统优化调度】计及源荷两侧不确定性的含风电电力系统低碳调度(Matlab代码实现)
172 0
|
安全 新能源 调度
计及碳捕集电厂低碳特性的含风电电力系统源–荷多时间尺度调度方法(Matlab代码实现)
计及碳捕集电厂低碳特性的含风电电力系统源–荷多时间尺度调度方法(Matlab代码实现)
|
新能源 调度
计及风电并网运行的微电网及集群电动汽车综合需求侧响应的优化调度策略研究(Matlab代码实现)
计及风电并网运行的微电网及集群电动汽车综合需求侧响应的优化调度策略研究(Matlab代码实现)
|
调度
微电网经济优化运行(光伏、储能、柴油机)(Matlab代码实现)
微电网经济优化运行(光伏、储能、柴油机)(Matlab代码实现)