基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)

简介: 基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)

主要内容  

该模型构建了含冷、热、电负荷的冷热电联供型综合能源系统优化调度模型,设备包括燃气轮机、电制冷机、锅炉、风光出力以及购售电交易,以用户购电购热冷量的成本、CCHP收益以及碳排放成本为目标,采用权值多目标方式将多目标转化为单目标求解,同时将约束采用罚函数形式进行表达,实现系统的经济运行,程序采用matlab编写,注释清晰,方便学习。

 部分代码  

PGnom1=1200;PGnom2=2800;%电功率基准值为1200和2800
Copac=0.80;Copec=3;
   %-------------%
       for t=1:24
        ygg(1,t)=(Aa+Bb*(X((t-1)*D+1)/PGnom1)+Cc*(X((t-1)*D+1)/PGnom1)^2+Dd*(X((t-1)*D+1)/PGnom1)^3)/100; %X((t-1)*D+1)在对应的该时刻的该燃气发电机的电功率
        ygg(2,t)=(Aa+Bb*(X((t-1)*D+2)/PGnom2)+Cc*(X((t-1)*D+2)/PGnom2)^2+Dd*(X((t-1)*D+2)/PGnom2)^3)/100;
        %ygg对应的是第i台燃气发电机的发电效率
       end
   %-------------%           
   for t=1:24
           %R是燃气机发电模型的λ
           FG(t)=R*(X((t-1)*D+1)/ygg(1,t)+X((t-1)*D+2)/ygg(2,t));           %燃气发电机在单时段的燃气耗量
           %R疑似是锅炉模型的λ
           FBoi(t)=R*(X((t-1)*D+3)+X((t-1)*D+4))/yBoi;                      %锅炉在单时段消耗的燃料量           
           FE(t)=FG(t)+FBoi(t); %t时刻的燃气量
           
           if  X((t-1)*D+5)>=0
              Rr(t)=rElc(t);
              PG(t)=X((t-1)*D+5);  %向主电网交互的电量,此时是买电
           else
              Rr(t)=RElc(t);
              PG(t)=0; %向主电网交互的电量,此时是卖电
            end
           CE(t)=Rr(t)*X((t-1)*D+5);              %单时段与主电网间能量交互成本 
           HJ(t)=ue*PG(t)+uf*FE(t);  %二氧化碳的排放量 
           
%---单时段功率平衡约束---%
       h(t)=abs(X((t-1)*D+1)+X((t-1)*D+2)+Pwind(t)+Ppv(t)-X((t-1)*D+6)+X((t-1)*D+5)-PD(t)-X((t-1)*D+8));%电负荷平衡约束
   end
    %---用的燃气量不同,得到的价格也不同---%
    if     sum(FE)<250
              rLrg=5.257;
           elseif   250<=sum(FE)<=4167
               rLrg=3.25;
           else 
               rLrg=2.814;
    end  
    %-----------------------------------%     
        f1=rLrg*sum(FE)+sum(CE);   %燃气成本和向电网购电或是售电后的花费             
        f2=W*sum(HJ);  %碳排放消费费用


 结果一览  

下载链接

相关文章
|
4天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
7天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
10天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
12天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
20天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
15天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。