【免费】面向多微网网络结构设计的大规模二进制矩阵优化算法

简介: 【免费】面向多微网网络结构设计的大规模二进制矩阵优化算法

1 主要内容

当前电力系统中微电网逐步成为发展的主力军,微网中包括分布式电源和负荷,单一的微电网是和外部电源进行连接,即保证用电的效益性,也要保证系统的稳定性,但是多个微电网是否可考虑通过电力网络结构设计来增加系统的鲁棒性,正是本模型考虑的内容。在该研究中,将多微网结构设计问题转化为数据模型,根据系统特点考虑了三种不同的节点类型,并通过基于大规模二进制矩阵的差分进化算法进行优化求解,通过算例验证了方法的有效性。该程序采用matlab编写,模块化编程,有部分注释,有需要的同学可以下载研究。

  • 节点故障网络拓扑变化示意

不同节点故障后,故障节点需要其他节点电源帮助恢复供电,上图即为三种情况下网络拓扑变化示意图。

  • 约束条件

对于I型节点来说,在节点i电源故障时,该类节点需要通过相邻节点电源进行补偿,以维持I节点负荷正常运转,也就是系统需要满足N-1的要求。该类节点约束的数学模型如下:

Si代表相邻节点对i节点可提供的电源功率支撑能力,Gj和Lj分别代表j节点的电源和负荷,通过上面约束能够看出,相邻节点的功率需要完全支撑起i节点的负荷。

对于II型节点,需满足两个节点同时故障仍然能保证系统正常工作,对应的约束数学模型如下:

对于III型节点,需要满足系统N-3的要求,对应约束的数学模型如下:

  • 目标函数

该模型的主要任务是需要系统满足N-k的需求,并确保系统具有稳定性和鲁棒性,从成本角度来看,其目标是需要微网间连接线总长度最小,具体数学模型如下:

2 部分代码

clear; clc; close all
addpath(genpath(pwd));
nP = 20; % Number of nodes, options: 10, 20, 50, 80, 100
pID = 1; % Dataset ID, range: 1-5
timer = tic;
%% Problem parameter settings
load(['MNSDP-LIB\MNSDP_' num2str(nP) '_' num2str(pID) '.mat']);
%% Parameter settings
PopSize = min(10*MCS.N,500); % Population size
MaxGen = 50*MCS.N; % Maximum number of generations
plt = 1; % Whether to draw real-time optimization graphs during execution, default is off (can greatly improve running speed)
%% Initialization
Population = Init(PopSize,pID,MCS);
ConvergenceF = zeros(2,PopSize);
ConvergenceCV = zeros(2,PopSize);
Gb=inf;
%% Start optimization and solving
fprintf('Number of nodes: %3d, Dataset ID: %d\n', nP, pID)
BMODE();
%% Optimization completed
timer = toc(timer);
disp(['Time used: ' num2str(timer) ' seconds']);
BestSol = BestInd(end);
figure
PlotSol() % Plot solution


3 结果一览

4 下载链接

相关文章
|
8天前
|
机器学习/深度学习 数据采集 人工智能
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
层次化Softmax算法通过引入Huffman树结构,将传统Softmax的计算复杂度从线性降至对数级别,显著提升了大规模词汇表的训练效率。该算法不仅优化了计算效率,还在处理大规模离散分布问题上提供了新的思路。文章详细介绍了Huffman树的构建、节点编码、概率计算及基于Gensim的实现方法,并讨论了工程实现中的优化策略与应用实践。
54 15
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
|
15天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
19天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
12天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
16天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
12天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
16天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
21天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
45 8
|
18天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
48 1