【免费】基于数据驱动的模型预测控制电力系统机组组合优化

简介: 【免费】基于数据驱动的模型预测控制电力系统机组组合优化

1 主要内容

该程序复现文章《Feature-Driven Economic Improvement for Network-Constrained Unit Commitment: A Closed-Loop Predict-and-Optimize Framework》,程序主要做的是一个基于数据驱动的电力系统机组组合调度模型,采用IEEE24节点系统作为研究对象,该模型的创新点在于:提出了一个闭环预测与优化(C-PO)框架,即利用NCUC模型的结构以及相关特征数据来训练一个以成本为导向的RES预测模型,该模型通过诱导的NCUC成本而不是统计预测误差来评估预测质量,并且在优化过程中采用拉格朗日松弛来加速训练过程,该模型理论深度较大,代码学习难度也较大,本次免费分享供相关方向同学参考。

原文模型及部分结果:

2 部分代码

Number_day          = Validate_day_end - Validate_day_1st + 1;
First_day_intuition = Validate_day_1st;
Final_day_intuition = Validate_day_end;
Scaler_load         = 0.22;
Scaler_SPG          = 0.39;
Scaler_WPG          = 0.39;
R_for_load          = 0.10;
R_for_RES           = 0.05;
Method_flag         = 'CPO';
Number_hour         = 24;
Number_RES          = 5;
%% -----------------------------SPO tunning----------------------------- %%
lamda                 = 100000;
Number_training_day   = 2;
Number_day_H_validity = 7; % The frequency of updating Predictor H.
Number_historic_day   = 7;
Solver_flag           = 'g';
Solver_gap            = 3;
Solver_time           = 10;
%% -----------------------Prepare box for recorder---------------------- %%
% Rec for UC
Rec_Decision_UC_I    = cell(Number_day, 1);
Rec_Decision_UC_P    = cell(Number_day, 1);
Rec_Decision_UC_R_h  = cell(Number_day, 1);
Rec_Decision_UC_R_c  = cell(Number_day, 1);
Rec_cost_UC_expected = cell(Number_day, 1);
Rec_cost_UC_SUSD     = cell(Number_day, 1);
Rec_RES_prediction   = cell(Number_day, 1);
Rec_infea_UC_flag    = cell(Number_day, 1);
Rec_UC_time          = cell(Number_day, 1);
% Rec for ED
Rec_cost_ACT      = cell(Number_day, 1);
Rec_cost_UC       = cell(Number_day, 1);
Rec_cost_SUSD_all = cell(Number_day, 1);
Rec_cost_SUSD_UC  = cell(Number_day, 1);
Rec_cost_SUSD_ED  = cell(Number_day, 1);
Rec_cost_P        = cell(Number_day, 1);
Rec_cost_LS       = cell(Number_day, 1);
Rec_cost_loss_ACT = cell(Number_day, 1);
Rec_cost_loss_UC  = cell(Number_day, 1);
Rec_infea_ED_flag = cell(Number_day, 1);
%% --------------------------Prepare box for CPO------------------------ %%
% Cost
CPO_cost_ACT      = zeros(Number_day, 1);
CPO_cost_UC       = zeros(Number_day, 1);
CPO_cost_SUSD_all = zeros(Number_day, 1);
CPO_cost_SUSD_UC  = zeros(Number_day, 1);
CPO_cost_SUSD_ED  = zeros(Number_day, 1);
CPO_cost_P        = zeros(Number_day, 1);
CPO_cost_LS       = zeros(Number_day, 1);
CPO_cost_loss_ACT = zeros(Number_day, 1);
CPO_cost_loss_UC  = zeros(Number_day, 1);
% Flag
CPO_infeasible_UC = zeros(Number_day, 1);
CPO_infeasible_ED = zeros(Number_day, 1);
%% -------------------------Set updating frequency---------------------- %%
Number_period = ceil(Number_day/Number_day_H_validity);
if Number_period == floor(Number_day/Number_day_H_validity)
    Number_day_in_period_full           = Number_day_H_validity;
    Number_day_in_period_last           = Number_day_H_validity;
    Period_size_list                    = ones(Number_period,1);
    Period_1st_list                     = zeros(Number_period,1);
    Period_end_list                     = zeros(Number_period,1);
    Period_size_list(1:Number_period-1) = Number_day_in_period_full;
    Period_size_list(Number_period)     = Number_day_in_period_last;
end
if Number_period > floor(Number_day/Number_day_H_validity)
    Number_day_in_period_full           = Number_day_H_validity;
    Number_day_in_period_last           = Number_day - (Number_period - 1)*Number_day_H_validity;
    Period_size_list                    = ones(Number_period,1);
    Period_1st_list                     = zeros(Number_period,1);
    Period_end_list                     = zeros(Number_period,1);
    Period_size_list(1:Number_period-1) = Number_day_in_period_full;
    Period_size_list(Number_period)     = Number_day_in_period_last;
end
for i_period = 1:Number_period
    Period_1st_list(i_period) = (Validate_day_end+1) - sum(Period_size_list(i_period:end));
    Period_end_list(i_period) = (Validate_day_1st-1) + sum(Period_size_list(1:i_period));
end
%% ------------------Prepare box for training details------------------- %%
% Training detail
CPO_TRA_Predictor_H     = cell(Number_period, 1);
CPO_TRA_Predictor_H_ele = cell(Number_period, 1);
CPO_TRA_obj             = zeros(Number_period, 1);
CPO_TRA_cost_ERM        = zeros(Number_period, 1);
CPO_TRA_regulation      = zeros(Number_period, 1);
CPO_TRA_time            = zeros(Number_period, 1);
%% --------------------------Prepare box for pick----------------------- %%
Picked_TRA_intuition        = zeros(Number_training_day,Number_period);
Picked_TRA_feature          = cell(Number_period,1);
Picked_TRA_load_city        = cell(Number_period,1);
Picked_TRA_reserve_load_req = cell(Number_period,1);
Picked_TRA_reserve_RES_req  = cell(Number_period,1);
Picked_TRA_cost_perfect     = cell(Number_period,1);
%% ------------------------------Let's go------------------------------- %%
for Current_period = 1:Number_period
    Number_dispatch_day = Period_size_list(Current_period);
    Dispatch_day_1st    = Period_1st_list(Current_period);
    Dispatch_day_end    = Period_end_list(Current_period);
    %% -----------------------Select training day----------------------- %%
    [Picked_TRA_intuition(:,Current_period),...
     Picked_TRA_feature{Current_period},...
     Picked_TRA_load_city{Current_period},...
     Picked_TRA_reserve_load_req{Current_period},...
     Picked_TRA_reserve_RES_req{Current_period},...
     Picked_TRA_cost_perfect{Current_period}]...
         = Step_00_Select_train_day(Dispatch_day_1st,...
                                    Dispatch_day_end,...
                                    Number_training_day,...
                                    Number_dispatch_day,...
                                    Scaler_load,...
                                    Scaler_SPG,...
                                    Scaler_WPG,...
                                    R_for_load,...
                                    R_for_RES,...
                                    Number_historic_day);
    %% -----------------------------Setp 01----------------------------- %%
    [CPO_TRA_Predictor_H{Current_period},...
     CPO_TRA_Predictor_H_ele{Current_period},...
     CPO_TRA_obj(Current_period),...
     CPO_TRA_cost_ERM(Current_period),...
     CPO_TRA_regulation(Current_period),...
     CPO_TRA_time(Current_period)]...
     = Step_01_CPO_train(lamda,...
                         Scaler_load,...
                         Scaler_SPG,...
                         Scaler_WPG,...
                         Solver_flag, Solver_gap, Solver_time,...
                         Picked_TRA_feature{Current_period},...
                         Picked_TRA_load_city{Current_period},...
                         Picked_TRA_reserve_load_req{Current_period},...
                         Picked_TRA_reserve_RES_req{Current_period},...
                         Picked_TRA_cost_perfect{Current_period},...
                         Number_training_day,...
                         Method_flag);


3 程序结果

4 下载链接

相关文章
|
7月前
|
数据可视化 数据挖掘 调度
【Python数据挖掘】优化电能能源策略:基于非侵入式负荷检测与分解的智能解决方案
【Python数据挖掘】优化电能能源策略:基于非侵入式负荷检测与分解的智能解决方案
99 0
|
7月前
|
调度 决策智能
基于条件风险价值CVaR的微网动态定价与调度策略(matlab代码)
基于条件风险价值CVaR的微网动态定价与调度策略(matlab代码)
|
算法 搜索推荐 数据挖掘
基于天牛须(BAS)与NSGA-Ⅱ混合算法的交直流混合微电网多场景多目标优化调度(Matlab代码实现)
基于天牛须(BAS)与NSGA-Ⅱ混合算法的交直流混合微电网多场景多目标优化调度(Matlab代码实现)
154 0
基于天牛须(BAS)与NSGA-Ⅱ混合算法的交直流混合微电网多场景多目标优化调度(Matlab代码实现)
|
算法 搜索推荐
串稳定混合交通的协同自适应巡航控制:基准和以人为本的设计(Matlab代码实现)
串稳定混合交通的协同自适应巡航控制:基准和以人为本的设计(Matlab代码实现)
|
7月前
|
Web App开发 数据可视化 数据挖掘
基于非侵入式负荷检测与分解的电力数据挖掘
基于非侵入式负荷检测与分解的电力数据挖掘
|
供应链
使用鲁棒优化的定价策略进行微电网不平衡管理研究(Matlab代码实现)
使用鲁棒优化的定价策略进行微电网不平衡管理研究(Matlab代码实现)
使用鲁棒优化的定价策略进行微电网不平衡管理研究(Matlab代码实现)
|
算法 数据挖掘 新能源
计及源荷不确定性的综合能源生产单元运行调度与容量配置优化研究(Matlab代码实现)
计及源荷不确定性的综合能源生产单元运行调度与容量配置优化研究(Matlab代码实现)
130 0
|
安全 Java Go
如何比较不同技术选项:综合因素加权法
如何比较不同技术选项:综合因素加权法
配电网络扩展规划:考虑使用概率性能源生产和消费概况的决策(Matlab代码实现)
配电网络扩展规划:考虑使用概率性能源生产和消费概况的决策(Matlab代码实现)
|
存储 Python
考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)
考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)
114 0

热门文章

最新文章