Matlab|面向低碳经济运行目标的多微网能量互联优化调度

简介: Matlab|面向低碳经济运行目标的多微网能量互联优化调度

主要内容  

该程序为多微网协同优化调度模型,系统在保障综合效益的基础上,调度时优先协调微网与微网之间的能量流动,将与大电网的互联交互作为备用,降低微网与大电网的互动频率,从而减少微网分布式电源出力的不确定性对电网造成冲击和不稳定的影响。所以,多微网与电网的互联调度作为微网之间互联调度的补充,微网之间的互联调度以就地消纳为原则,当微网内的分布式电源无法满足微网内的负荷需求,或出现负荷需求过小以致清洁能源能量溢出的状况时(储能系统已充满电),启动微网与大电网的间的互联调度。微网与微网之间通过充分挖掘多微网间源储荷所具有的时空互补特性,实现多微网系统内能量互补,进一步提高对可再生能源的消纳能力,减少分布式能源和负荷的波动性、不确定性带来的影响。程序采用matlab进行求解,基本句句注释,编程小白的福利,方便学习上手!

  • 优化流程

多微网互联系统的运行状态随时刻变化,其调度策略也相应发生改变,其调度流程图如下图所示:

  部分程序  

%% 导入数据
Ppv1=xlsread('Ppv1.xlsx');%微网1光伏
Pwt1=xlsread('Pwt1.xlsx');%微网1风力
PL1=xlsread('PL1.xlsx')*1.5;%微网1负荷
Ppv2=xlsread('Ppv2.xlsx');%微网2光伏
Pwt2=xlsread('Pwt2.xlsx');%微网2风力
PL2=xlsread('PL2.xlsx')*1.5;%微网2负荷
Ppv3=xlsread('Ppv3.xlsx');%微网3光伏
Pwt3=xlsread('Pwt3.xlsx');%微网3风力
PL3=xlsread('PL3.xlsx')*1.5;%微网3负荷
%判断各个时刻的情况
for i=1:24
    pd1(i)=Ppv1(i)+Pwt1(i)-PL1(i);
    pd2(i)=Ppv2(i)+Pwt2(i)-PL2(i);
    pd3(i)=Ppv3(i)+Pwt3(i)-PL3(i);
    pdz(i)=Ppv1(i)+Pwt1(i)-PL1(i)+Ppv2(i)+Pwt2(i)-PL2(i)+Ppv3(i)+Pwt3(i)-PL3(i);
end
Cp1=xlsread('配网购电电价.xlsx');%微网与大电网间的购电电价
Cp2=xlsread('微网与微网间的分时电价.xlsx');%微网与微网间的分时电价
Cp3=xlsread('配网售电电价.xlsx');%微网与大电网间的售电电价
%决策变量
PG1=sdpvar(24,1,'full');%微网1微型燃气轮机功率
Psch1=sdpvar(24,1,'full');%微网1储能充电
Psdis1=sdpvar(24,1,'full');%微网1储能放电
FC1=sdpvar(24,1,'full');%微网1燃料电池功率
PG2=sdpvar(24,1,'full');%微网2微型燃气轮机功率
Psch2=sdpvar(24,1,'full');%微网2储能充电
Psdis2=sdpvar(24,1,'full');%微网2储能放电
FC2=sdpvar(24,1,'full');%微网2燃料电池功率
PG3=sdpvar(24,1,'full');%微网3微型燃气轮机功率
Psch3=sdpvar(24,1,'full');%微网3储能充电
Psdis3=sdpvar(24,1,'full');%微网3储能放电
FC3=sdpvar(24,1,'full');%微网3燃料电池功率
PMbuy1=sdpvar(24,1,'full');%微网1向配网购电
PMsell1=sdpvar(24,1,'full');%微网1向配网售电
PMbuy2=sdpvar(24,1,'full');%微网2向配网购电
PMsell2=sdpvar(24,1,'full');%微网2向配网售电
PMbuy3=sdpvar(24,1,'full');%微网3向配网购电


  结果一览  

下载链接

相关文章
|
27天前
|
存储 算法 数据可视化
基于 MATLAB的GUI信号处理界面设计 源码+运行截图
基于 MATLAB的GUI信号处理界面设计 源码+运行截图
46 2
|
6天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
17天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
20天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
28天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
28天前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。

热门文章

最新文章