AutoMQ:基于阿里云计算与存储产品实现云原生架构升级

本文涉及的产品
对象存储 OSS,20GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
文件存储 NAS,50GB 3个月
简介: AutoMQ[1] 是新一代基于共享存储架构实现的云原生 Kafka。得益于其存算分离的共享存储架构,通过和阿里云合作,深度使用阿里云可靠、先进的云服务如对象存储OSS、块存储 ESSD、弹性伸缩ESS以及抢占式实例实现了相比 Apache Kafka 10倍的成本优势并且提供了自动弹性的能力。


引领消息和流存储走向云原生时代,助力客户实现云端业务能力提升是包括阿里云、Auto MQ等在内的每一家云服务提供商的使命。但在具体的项目实践中会发现很多产品虽然宣称自己是云原生的,实际上却并没有对云计算能力的应用产生本质的变化。也有一些产品支持部署到 Kubernetes 后,就认为自己达到了云原生的阶段。笔者认为真正的云原生产品是要能够深度把云计算原生的能力、弹性的能力和规模化的优势充分利用起来,在成本和效率上都要有数量级的优势。

 

2024 3 月份,作为阿里云产品生态合作伙伴,AutoMQ 与阿里云进行了产品及解决方案的联合发布,并正式上架阿里云云市场进行售卖。本文将盘点 AutoMQ 立足于阿里云是如何深度使用计算和存储产品,以及基于这些产品和技术为用户解决什么样的实际问题。


1. 基于存储服务的成本优化与性能提升

1.1 对象存储 OSS

海量的数据正在往云端聚集,对象存储已经成为了大数据和数据湖生态事实上的存储引擎,今天大量的数据密集型软件正在从文件 API 迁移到对象 API,以 Kafka 为代表的流式数据入湖也是大势所趋。

 

AutoMQ 基于对象存储研发了 S3Stream[1] 流存储库,能够基于 Object API 提供流式数据的高效的读取和摄入,然后通过存算分离的架构方式将 Apache Kafka 的存储层对接至对象存储,充分获得了共享存储带来的技术和成本优势:

●       OSS 同城冗余的标准版存储单价为 0.12 /GiB/月,相较于 ESSD PL1 的单价(1 /1 GiB/月)便宜 8 倍以上。同时,OSS 天然具备多可用区的可用性和持久性,数据无需额外再做复制,使得相比较传统的基于云盘的 3 副本架构,成本能节省 25 倍。

●       共享存储架构相比较 Shared-Nothing 架构,是真正的存算分离,数据跟计算节点无绑定关系。因此,AutoMQ 在进行分区移动时无需复制数据,能够做到真正的秒级无损分区迁移。这也是支撑 AutoMQ 流量实时重平衡和秒级节点水平扩缩容的原子能力。

 

AutoMQ 从成本和架构上对 OSS 提供的能力进行了充分挖掘,但这仅仅是起步,共享存储将为 AutoMQ 带来丰富的技术和产品创新上的想象力。

●       灾难恢复:作为基础软件,最担心的莫过于集群出现故障后无法继续提供服务,或者数据无法恢复,可能的故障有软件缺陷、机房级故障等。因为有了共享存储,结合简单的元数据快照机制,可以在关闭故障集群后,基于 OSS 上的数据状态重新打开为一个全新的集群,用于恢复业务。

●       跨地域容灾:OSS 提供地域间的准实时复制,业务无需自己组建跨地域网络,也无需搭建昂贵的数据 Connect 集群,结合上述提到的灾难恢复技术,可以很容易 0 编码实现跨地域容灾的解决方案。

●       共享只读副本:高扇出是消费流式数据的一个重要的业务场景,在一家 Data 驱动的企业里面,一份数据可能存在数十个订阅方,原集群无法承担数十倍的读取流量。基于 OSS,无需数据复制,就可以以共享存储的形式直接从 OSS 上打开只读副本,提供极具扩展性的高扇出能力。

●       Zero ETL:现代的数据技术栈都在基于对象存储来构建,当数据在同一个存储池,且具备一定的自描述能力后,数据孤岛就能够被低成本打破,不需要构建 ETL 通道,不同的分析软件或者计算引擎,可以共享来自不同数据源的数据。

 

另一方面,流式数据入湖,现代化数据栈完成了最后一块拼图,流湖一体的架构有了落地的基础,这也是 Confluent 推出的 TableFlow[2] 带来的巨大想象力。数据以流的形式产生和存储,符合真实世界中信息不断生成和变化的特征,实时生成的数据一定要以流的形式存在,从而流计算框架有机会挖掘更多实时的价值。当一段时间后数据失去新鲜度后,再转换为 Iceberg[3] 等表的形态进行存储,做进一步大规模的数据分析。从数据的生命周期来看,从流到表,是非常符合数据从高频变低频,从热变冷的自然特征,在对象存储之上构建流表一体的数据技术栈是未来的趋势。

 

1.2 块存储 ESSD

如果说大家仍然将 ECS 当做物理机来看待,云盘 ESSD 也有类似的命运。用户对 ESSD 通常有两类误解:

●       ESSD 类比本地盘,担心数据的持久性,认为坏盘、坏道等专属于物理盘的错误类型仍然会出现。

●       认为 ESSD 是云盘,所以远程写入性能差,延迟不可控,容易抖动。

 

实际上,ESSD 背后是一套完整的分布式文件系统,内置了多副本技术,能够提供 9 9 的数据持久性。用户对物理存储介质的错误完全无需感知,底层系统能自动运维容错数百万块物理盘。

 

同时,ESSD 也是共享存储的形态,ESSD 卷可以在 ECS 故障时,挂载至其他节点继续提供读写服务。从这个角度来看,ESSD OSS 都是共享存储,而非有状态的本地磁盘,这也是 AutoMQ 声称自己是无状态数据软件的主要原因。

 

在性能方面,ESSD 背后有软硬件一体的优化,通过将 ESSD 客户端卸载到神龙 MOC[4] 来实现硬件加速,同时与远端服务器之间采用基于 RDMA 技术的自研高性能网络协议和拥塞控制算法,而非 TCP 技术栈,以适应数据中心内低延迟和低丢包率的特点。这些优化带来了稳定的 IOPS 和吞吐性能,以及高度可扩展的存储容量。

 

AutoMQ 使用 ESSD 有三个创新点:

●       可靠性分离,充分利用 ESSD 背后的多副本技术,避免在应用层引入 Raft 或者 ISR 等复制机制,在存储成本,网络复制带宽成本方面都有大幅度降低。

●       ESSD 作为 WAL,以裸设备、Direct IO 的形式循环写入 ESSD,仅用于故障场景下的恢复。得益于 ESSD 的共享属性,AutoMQ WAL 是一个远程的可共享的 WAL,能被集群中的任何节点进行接管恢复。

●       面向云服务的计费项设计,ESSD 给任意容量的卷提供至少 100 MiB/s 左右的吞吐和 1800 左右的 IOPSAutoMQ 仅需要一块最小规格的 ESSD 卷作为 WAL 盘,比如一块 2GiB ESSD PL0 卷,每月仅需 1 块钱,即可提供上述性能。如果单机需要更高的存储性能,仅需组合多块小规格的 WAL 盘即可线性扩展。

 

ESSD OSS 拥有截然不同的存储特征,ESSD 是高性能,低延迟和高 IOPS 的存储介质,但成本高昂,不过 AutoMQ 找到了一种最经济的使用 ESSD 的方法。OSS 不擅长于高 IOPS 的场景,它会为每一次 IO 进行计费,但 OSS 存储成本低,吞吐和容量近乎无限地扩展。OSS 作为主存储提供了高吞吐、低成本、高可用、无限扩展的存储能力;ESSD 提供了用于存储 WAL 的持久化、高可用、低延迟的存储能力,并且由于其虚拟化的性质可以申请非常小的存储空间。AutoMQ 自研的流存储库 S3Stream[1] 巧妙地将 ESSD OSS 两类共享存储的优势集中到了一起,提供了低延迟、高吞吐、低成本和容量无限的的流存储能力。


Four primary data flows of AutoMQ.png


多重挂载和 NVMe 协议

诚然,ESSD 虽说是共享存储,但使用上是块设备的形态,所以要将 ESSD 高效地共享起来,需要额外的存储技术支撑,即多重挂载和 NVMe PR 协议。

 

云盘本身支持在卸载后重新挂载到其他节点用于恢复,但当原挂载节点出现 ECS Hang 等类型的故障时,云盘的卸载耗时比较不可控,所以可以依赖 ESSD 提供的多重挂载能力,可以做到不进行云盘的卸载,直接多重挂载到另一个 ECS 节点。

 

AutoMQ Failover 流程为例,当某 Broker 节点被识别为 Failed Broker 后,将其上的云盘,多重挂载到健康的 Broker 进行数据恢复。在进入真正的 Recovery 流程前,需要确保原节点没有在持续写入,AutoMQ 通过 NVMe 协议的 PR 锁对原节点进行 IO Fencing

 

这两个过程均是毫秒级的操作,可以将 ESSD AutoMQ 场景下真正地变为共享存储。


Regional ESSD

ESSD 背后虽然是多副本架构,但常规的 ESSD 其多副本是分布在单个 AZ 内的,这也导致 ESSD 无法应对 AZ 级的故障,Regional EBS[5] 就是用于解决该问题的。通过将底层的多副本冗余分布在多个 AZ 内,采用强一致的读写技术,能够容忍单 AZ 故障。

 

在共享挂载方面,支持 Region ECS 跨可用区挂载以及多可用区共享挂载,支持抢占式的 IO Fencing NVMe PR 锁形式的 IO Fencing。对于 Regional ESSD,国外主流云厂商均有对应的产品形态,同时在阿里云上也即将发布,该产品使 AutoMQ 能够以极低的成本容忍单 AZ 故障,满足可用性较高的业务场景需求。

 

2. 基于计算服务的可用性和弹性能力提升

2.1 云服务器 ECS

从过去十年的上云历程来看,大部分企业上云的方式是以Rehost 的形式进行上云。这里 Host 的替换实际上就是拿云服务器 ECS 去替换传统线下的物理主机,但实际上,ECS 与线下物理主机的最大区别在于 ECS 提供了服务 SLA,它能借助虚拟化的一些技术规避部分物理主机软硬件故障,对于无法规避的物理主机故障,云服务器也能在宕机后快速在新的物理主机上恢复,缩短业务的受损时长。

 

阿里云单 ECS 实例承诺的 SLA 99.975%,也就是说,在云上以单 ECS 节点的形式部署一个服务,能做到 3 9 以上的可用性,这实际上已经是生产可用的,能满足很多业务的可用性要求。以 AutoMQ 为例,选取一个 2C16G ECS 部署一个单节点的 AutoMQ 集群,就能提供 3 9 的可用性以及 80MiB/s 的写入能力,成本可以说是做到了极致。

 

AutoMQ 在设计之初就将 ECS 当成了云服务来看待,而不是物理主机,在 ECS 出现故障时,更多地依赖 ECS 节点能快速恢复,比如宕机的时候能自动迁移和自动拉起。只有在失去某个节点连续的数个心跳后,AutoMQ 的主动 Failover 能力才会进行介入。这样设计的考虑点主要有以下两点:

●       对于物理机硬件故障或内核故障问题,ECS 能做到宕机后秒级恢复,所以 AutoMQ 依赖 ECS 的快速恢复能力来处理这类故障,同时也避免主动 Failover 能力过于灵敏带来不必要的容灾处理。

●       当出现 ECS 宕机、网络分区、甚至 AZ 级故障时,AutoMQ Failover 能力才会生效,通过 ESSD OSS 提供的能力做进一步主动的容灾。


2.2 弹性伸缩 ESS

2024 3 月份,AutoMQ 与阿里云进行了联合发布,正式上架阿里云云市场进行售卖。从 AutoMQ 内核的 GA 到快速登陆阿里云市场,这背后有两款产品的助力,第一款是阿里云计算巢,它为服务商提供了标准化的交付流程,另一款就是弹性伸缩 ESSAutoMQ 存算分离的架构虽然天然亲和弹性伸缩,但想要提供自动伸缩的能力,也并非易事[6]AutoMQ 使用 ESS 来简化最后一公里的交付之路。


AutoMQ 在公有云上的交付在 Kubernetes ESS 之间选择了 ESS,背后主要有几点考虑:

●       AutoMQ 推出的第一个产品形态是 BYOC,为了简化依赖,避免每个用户在部署 AutoMQ 时都需要准备一套 K8s 集群。

●       弹性伸缩 ESS 具备配置管理、自动弹性伸缩、定时扩缩容、机型管理、多 AZ 形态、健康检查等能力已经能媲美K8s 核心的 Deployment 能力, ESS 可以看作是 IaaS 层提供的轻量级 K8s 形态。

●       前文提到 AutoMQ 依赖的多重挂载,Regional ESSD 等云厂商提供的新特性,K8s 很难第一时间支持。纯粹利用 IaaS 层的 API 相较于使用 K8s API,有类似 C++ 语言和 Java 语言的区别,Native 的特性需要在 K8s 层面进行透出才能使用。


当然,K8s 是一款非常优秀软件,AutoMQ 后续也会支持部署到 K8s,特别是在私有云环境,能够屏蔽大量的 IaaS 层差异。


2.3 抢占式实例

弹性的能力并不是云厂商与生俱来的,云厂商为了给客户提供充足的弹性供给,需要承担巨大的保有成本,从而不可避免地导致了云厂商有大量的闲置的计算资源。这部分闲置的资源通过抢占式实例进行售卖,其性能与常规 ECS 实例无任何区别,相比较按量付费的实例成本最高能节省 90%

 

抢占式实例相比较按量付费实例,有一个重要的特征,就是其价格随供需变化而浮动,比如如果晚上业务对算力的需求小,价格自然就更加便宜。所以,在一定程度上抢占式实例的定价包含了时间的维度,如果所有的用户都能将抢占式实例用起来,自然就会被价格所调节,会促使大家为自己的工作负载选择最合适的运行时间段。比如,AutoMQ 会在晚上运行一些大规模的测试用例,通过使用抢占式实例,大幅度降低测试的成本。

 

另一个特征,抢占式实例会被随时中断回收,这确实为使用它带来了很高的门槛。但 AutoMQ 推出的存算分离架构,使得 Broker 节点无任何本地状态,能够从容应对抢占式实例被回收的情形。下图演示了AutoMQ 在抢占式实例回收时通过ESSD API 完成 WAL 恢复的流程。AutoMQ 能达到十倍降本的效果,抢占式实例在计算降本的维度起到了重要的作用。


Reattach idle data volume to other ECS instance.png


3. 结束语

今天,基础软件的大半壁江山,大都诞生于 10 年前,它们高效地支撑了大数据和互联网的快速发展。但面向 IDC 环境设计的基础软件,在云计算成熟的今天来看,并不是那么的高效和低成本,今天大量的基础软件在基于云重新设计,比如可观测性存储组件、TP AP 数据库、数据湖软件等。Kafka 作为重要的流存储软件,在大数据生态系统中占据了举足轻重的位置,在数据驱动型企业的整个 IT 支出中占比 10% ~ 20%,基于云原生的能力重新设计 Kafka,为企业降本增效,在当前降本的大背景下,有重大的意义。AutoMQ 通过深度用云,以云原生的能力重构了 Apache Kafka,创造了 10 倍的成本优势。相较于KafkaAutoMQ的共享存储架构使得在分区迁移、节点动态扩缩容、流量自动重平衡等运维方面的耗时指标得到了数百倍的优化。

 

4. 引用

1.       开源的云原生版 Kafka——AutoMQ

2.       Confluent 全新发布 Tableflow,统一流和分析型计算

3.       开放表格式 Iceberg 官网

4.       阿里云自研神龙架构

5.       2023 云栖大会抢先发布 Regional ESSD

6.       为什么公共云的弹性能力很难被发挥出来?


作者:周新宇  AutoMQ联合创始人&CTO

相关文章
|
8天前
|
Cloud Native 安全 Java
铭师堂的云原生升级实践
铭师堂完整经历了云计算应用的四个关键阶段:从”启动上云”到”全量上云”,再到”全栈用云”,最终达到”精益用云”。通过 MSE 云原生网关的落地,为我们的组织带来了诸多收益,SLA 提升至100%,财务成本降低67%,算力成本降低75%,每次请求 RT 减少5ms。
铭师堂的云原生升级实践
|
13天前
|
供应链 安全 Cloud Native
阿里云容器服务助力企业构建云原生软件供应链安全
本文基于2024云栖大会演讲,探讨了软件供应链攻击的快速增长趋势及对企业安全的挑战。文中介绍了如何利用阿里云容器服务ACK、ACR和ASM构建云原生软件供应链安全,涵盖容器镜像的可信生产、管理和分发,以及服务网格ASM实现应用无感的零信任安全,确保企业在软件开发和部署过程中的安全性。
|
7天前
|
Cloud Native 安全 Java
杭州铭师堂的云原生升级实践
在短短 2-3 年间,杭州铭师堂完整经历了云计算应用的四个关键阶段:从“启动上云”到“全量上云”,再到“全栈用云”,最终达到“精益用云”。也从云计算的第一次浪潮,迈过了第二次浪潮,顺利的进入到了 第三次浪潮 AI + 云。
|
14天前
|
Cloud Native API 微服务
微服务引擎 MSE 及云原生 API 网关 2024 年 11 月产品动态
微服务引擎 MSE 及云原生 API 网关 2024 年 11 月产品动态。
|
13天前
|
人工智能 Kubernetes Cloud Native
阿里云容器服务,智算时代云原生操作系统
2024云栖大会,阿里巴巴研究员易立分享了阿里云容器服务的最新进展。容器技术已成为云原生操作系统的基石,支持多样化的应用场景,如自动驾驶、AI训练等。阿里云容器服务覆盖公共云、边缘云、IDC,提供统一的基础设施,助力客户实现数字化转型和技术创新。今年,阿里云在弹性计算、网络优化、存储解决方案等方面进行了多项重要升级,进一步提升了性能和可靠性。
|
15天前
|
运维 Cloud Native 应用服务中间件
阿里云微服务引擎 MSE 及 云原生 API 网关 2024 年 11 月产品动态
阿里云微服务引擎 MSE 面向业界主流开源微服务项目, 提供注册配置中心和分布式协调(原生支持 Nacos/ZooKeeper/Eureka )、云原生网关(原生支持Higress/Nginx/Envoy,遵循Ingress标准)、微服务治理(原生支持 Spring Cloud/Dubbo/Sentinel,遵循 OpenSergo 服务治理规范)能力。API 网关 (API Gateway),提供 APl 托管服务,覆盖设计、开发、测试、发布、售卖、运维监测、安全管控、下线等 API 生命周期阶段。帮助您快速构建以 API 为核心的系统架构.满足新技术引入、系统集成、业务中台等诸多场景需要
|
21天前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。
|
18天前
|
Kubernetes Cloud Native 微服务
探索云原生技术:容器化与微服务架构的融合之旅
本文将带领读者深入了解云原生技术的核心概念,特别是容器化和微服务架构如何相辅相成,共同构建现代软件系统。我们将通过实际代码示例,探讨如何在云平台上部署和管理微服务,以及如何使用容器编排工具来自动化这一过程。文章旨在为开发者和技术决策者提供实用的指导,帮助他们在云原生时代中更好地设计、部署和维护应用。
|
28天前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
42 3
|
1月前
|
Cloud Native 持续交付 云计算
云原生架构的演进与挑战
随着云计算技术的不断发展,云原生架构已成为企业数字化转型的重要支撑。本文深入探讨了云原生架构的概念、发展历程、核心技术以及面临的挑战,旨在为读者提供一个全面了解云原生架构的视角。通过分析Kubernetes、Docker等关键技术的应用,以及微服务、持续集成/持续部署(CI/CD)等实践案例,本文揭示了云原生架构在提高应用开发效率、降低运维成本、增强系统可扩展性等方面的显著优势。同时,也指出了云原生架构在安全性、复杂性管理等方面所面临的挑战,并提出了相应的解决策略。