Matlab|考虑源-荷-储协同互动的主动配电网优化调度研究

简介: Matlab|考虑源-荷-储协同互动的主动配电网优化调度研究

主要内容  

该程序以33节点系统为例实现了考虑源-荷-储协同互动的主动配电网优化调度模型,程序采用配电网二阶锥约束、储能约束、分布式电源约束、可平移、可削减负荷约束等,以负荷调用成本、储能调用成本、储能补贴和收益、购电成本、网损成本之和作为目标函数,程序参考下图文献,虽然给出了riqian和rinei两个matlab程序,但是实际上未对日内进行滚动优化,程序采用matlab+cplex求解,程序注释清楚,方便学习!

 部分代码  

mpc = IEEE33BW;
pload = mpc.Pload*100;%节点有功负荷,原数据100MVA,改为1MVA
PPload=[1.77184023  1.760691425  1.985343246  2.164759614  2.525216573  2.836282757  2.717289933  2.912703959  2.938170633  3.200578131  3.93626314  3.680872774  3.53168293  3.215685929  2.903666471  2.626416093  2.33835944  2.582209352  3.063339069  3.465731913  3.01938202  2.591419695  2.254491338  1.784180138];
qload = mpc.Qload*100;%节点无功负荷
branch = mpc.branch;
branch(:,3) = branch(:,3)*1/(10^2);%求阻抗标幺值
R = real(branch(:,3));
X = imag(branch(:,3));
T = 24;%时段数为24小时
nb = 33;%节点数
nl = 32;%支路数
nwt = 2;%风机
npv = 1;%光伏
S_pv=1.5;
RR=xlsread('光照强度数据.xlsx','B2:B25');
pp_pv=xlsread('光照强度数据.xlsx','D3:AA3');
C_e=xlsread('电价.xlsx','A1:X1');
C_ae=xlsread('激励电价.xlsx','A1:X1');
C_de=xlsread('需求响应激励价格.xlsx','A1:X1');
R_STD=1000;%标准太阳辐射
R_C=150;%辐射点
PP_pv=zeros(npv,T);
% %%%%光伏出力模型
for i=1:1:npv 
    for t=1:1:T
        if(0<=RR(t))&(RR(t)<=R_C)
            PP_pv(i,t)=S_pv*((RR(t))^2)/(R_STD*R_C);
        else if(R_C<=RR(t))&(RR(t)<=R_STD)
                PP_pv(i,t)=S_pv*RR(t)/R_STD;
            else if(R_STD<=RR(t))
                    PP_pv(i,t)=S_pv;
                end
            end
        end
    end
end
v=xlsread('风速数据.xlsx','B2:B25');
pp_wt=xlsread('风速数据.xlsx','G2:AD2');
v_in=3;%切入风速
v_r=11.3;%额定风速
v_out=25;%切出风速
S_wt=[1;1.5];
PP_wt=zeros(nwt,T);
%%%风电出力模型
for i=1:1:nwt 
    for t=1:1:T
      if (0<=v(t)) &(v(t)<=v_in)|(v_out<=v(t))
          PP_wt(i,t)=0;
      else if(v_in<=v(t))&(v(t)else if(v_r<=v(t))&(v(t)2;%ESS数
v_in=3;%切入风速
v_r=11.3;%额定风速
v_out=25;%切出风速
upstream = zeros(nb,nl);
dnstream = zeros(nb,nl);
for t = 1:nl
    upstream(t,t)=1;
end
for t = [1:16,18:20,22:23,25:31]
    dnstream(t,t+1)=1;
end
dnstream(1,18) = 1;
dnstream(2,22) = 1;
dnstream(5,25) = 1;
dnstream(33,1) = 1;
Vmax = [1.05*1.05*ones(nb-1,T)
        1.05*1.05*ones(1,T)];
Vmin = [0.95*0.95*ones(nb-1,T)
        0.95*0.95*ones(1,T)];
Pgmax = [zeros(nb-1,T)
        5*ones(1,T)];
Pgmin = [zeros(nb-1,T)
         0*ones(1,T)]; 
Qgmax = [zeros(nb-1,T)
         3*ones(1,T)];
Qgmin = [zeros(nb-1,T)
         -1*ones(1,T)];
%% 2.设变量
V = sdpvar(nb,T);%电压的平方
I = sdpvar(nl,T);%电流的平方
P = sdpvar(nl,T);%线路有功
Q = sdpvar(nl,T);%线路无功
Pg = sdpvar(nb,T);%发电机有功
Qg = sdpvar(nb,T);%发电机无功
p_wt = sdpvar(nwt,T);%风机有功
p_pv = sdpvar(npv,T);%光伏有功
s_IL=binvar(1,T);
Temp_shift=binvar(3,T);
Lshift=sdpvar(3,T);
Lshift_old=xlsread('可转移负荷.xlsx','A1:X3');
PLOAD=sdpvar(nb,T);
Pload=sum(PLOAD);
p_dch = sdpvar(ness,T);%ESS放电功率
p_ch = sdpvar(ness,T);%ESS充电功率
u_dch = binvar(ness,T);%ESS放电状态
u_ch = binvar(ness,T);%ESS充电状态
E_ess = sdpvar(ness,T);%ESS的电量
S_IL1=sdpvar(1,T,'full');
S_IL2=sdpvar(1,T,'full');
%% 3.设约束
C = [];
%% 需求响应约束
%可平移负荷1约束,9-14为可平移负荷区间
 C = [C,sum(Temp_shift(1,1:8))==0,sum(Temp_shift(1,9:14))==1,sum(Temp_shift(1,15:24))==0];
 %可平移负荷2约束,19-22为可平移负荷区间
 C = [C,sum(Temp_shift(2,1:18))==0,sum(Temp_shift(2,19:22))==1,sum(Temp_shift(2,23:24))==0];
  %可平移负荷3约束,8-21为可平移负荷区间
 C = [C,sum(Temp_shift(3,1:7))==0,sum(Temp_shift(3,8:21))==1,sum(Temp_shift(3,22:24))==0];
 %可平移负荷1&可平移负荷2&可平移负荷3平移
 for k = 1:24
  C = [C, implies(Temp_shift(1,k),Lshift(1,:)==circshift(Lshift_old(1,:),[0,k-17]))];
  C = [C, implies(Temp_shift(2,k),Lshift(2,:)==circshift(Lshift_old(2,:),[0,k-3]))];
  C = [C, implies(Temp_shift(3,k),Lshift(3,:)==circshift(Lshift_old(3,:),[0,k-23]))];
 end
 TL1=[zeros(3,T);Lshift_old(1,:)-Lshift(1,:);zeros(29,T)];    
 TL2=[zeros(14,T);Lshift_old(2,:)-Lshift(2,:);zeros(18,T)];
 TL3=[zeros(29,T);Lshift_old(3,:)-Lshift(3,:);zeros(3,T)];
%%%%可削减负荷%%%%%
C=[C,0<=S_IL1<=0.8*pload(10,:)];
C=[C,0<=S_IL2<=0.8*pload(26,:)];
IL1=[zeros(9,T);S_IL1(1,:);zeros(23,T)];
IL2=[zeros(25,T);S_IL2(1,:);zeros(7,T)];
C=[C,pload+TL1+TL2+TL3-IL1-IL2==PLOAD];
%% 储能装置(ESS)约束
%充放电状态约束
C = [C, u_dch(1,:) + u_ch(1,:) <= 1];%表示充电,放电,不充不放三种状态
C = [C, u_dch(2,:) + u_ch(2,:) <= 1];
C = [C, u_dch(1,:) + u_dch(2,:) <= 1];
C = [C, u_ch(1,:) + u_ch(2,:) <= 1];
%充放电时刻约束
C = [C, [sum(u_dch(1,8:15))==0,sum(u_dch(1,18:21))==0]];
C = [C, [sum(u_ch(1,1:7))==0,sum(u_ch(1,14:18))==0,sum(u_ch(1,22:24))==0]];
C = [C, [sum(u_dch(2,8:15))==0,sum(u_dch(2,18:21))==0]];
%功率约束
C = [C, 0 <= p_dch <= u_dch*0.3];
C = [C, 0 <= p_ch<= u_ch*0.3];
%容量约束
for t = 1:23
        C = [C, E_ess(1,t+1) == E_ess(1,t) + 0.9*p_ch(1,t) - 0.9*p_dch(1,t)]; 
end
for t = 1:23
        C = [C, E_ess(2,t+1) == E_ess(2,t) + 0.9*p_ch(2,t) - 0.9*p_dch(2,t)]; 
end
C = [C,  0.1<=E_ess(1,:)/1.03<=0.9];
C = [C,  0.1<=E_ess(2,:)/1.21<=0.9];
%投入节点选择
P_dch1 = [zeros(16,T);p_dch(1,:);zeros(16,T)];
P_ch1 = [zeros(16,T);p_ch(1,:);zeros(16,T)];
P_dch2 = [zeros(16,T);p_dch(2,:);zeros(16,T)];
P_ch2 = [zeros(16,T);p_ch(2,:);zeros(16,T)];
%% 风机+光伏约束
C = [C, 0 <= p_wt,p_wt <= 1.2*PP_wt];
P_wt = [zeros(15,T);p_wt(1,:);zeros(10,T);p_wt(2,:);zeros(6,T)];
C = [C, 0 <= p_pv,p_pv <=1.2*PP_pv];
p_pv =1.2*PP_pv;
P_pv = [zeros(15,T);p_pv;zeros(17,T)];
%% 潮流约束
Pin = -upstream*P + upstream*(I.*(R*ones(1,T))) + dnstream*P;%节点注入有功
Qin = -upstream*Q + upstream*(I.*(X*ones(1,T))) + dnstream*Q;%节点注入无功
C = [C, Pin+pload+TL1+TL2+TL3-IL1-IL2- P_wt- P_pv- Pg-P_dch1+ P_ch1-P_dch2+ P_ch2==0];
C = [C, Qin + qload - Qg == 0];
%欧姆定律约束
C = [C, V(branch(:,2),:) == V(branch(:,1),:) - 2*(R*ones(1,24)).*P - 2*(X*ones(1,24)).*Q + ((R.^2 + X.^2)*ones(1,24)).*I];
%二阶锥约束
C = [C, V(branch(:,1),:).*I >= P.^2 + Q.^2];
%% 通用约束
%节点电压约束
C = [C, Vmin <= V,V <= Vmax];
%发电机功率约束
C = [C, Pgmin <= Pg,Pg <= Pgmax,Qgmin <= Qg,Qg <= Qgmax];
%支路电流约束
C = [C, 0 <= I,I <= 12];
%% 4.设目标函数
Pload2=PPload+sum(p_dch-p_ch);
Pload3=Pload+sum(p_dch-p_ch);
%%%%%%%%%
for t=1:1:23
    f1_0=0.25*[(max(PPload)-min(PPload))/mean(PPload(:))]+0.75*[(max(abs(PPload(t)-Pload(t+1))))/mean(PPload(:))];
     f1_1=0.25*[(max(Pload)-min(Pload))/mean(Pload(:))]+0.75*[(max(abs(Pload(t)-Pload(t+1))))/mean(Pload(:))];
     f1_2=0.25*[(max(Pload2)-min(Pload2))/mean(Pload2)]+0.75*[(max(abs(Pload2(t)-Pload2(t+1))))/mean(Pload2(:))];
     f1_3=0.25*[(max(Pload3)-min(Pload3))/mean(Pload3)]+0.75*[(max(abs(Pload3(t)-Pload3(t+1))))/mean(Pload3(:))];
end
%%%%%%%电压差最小%%%%%%%%%
f1=0;
for t=1:1:T
    for n=1:1:nb-1
        f1=f1+abs(V(n,t)-V(n+1,t));
    end
end
%%%%%%%%%
B1=sum(sum(p_dch-p_ch).*C_ae);
B2=sum(sum(p_dch))*200;
R_ess=B1+B2;   %储能补贴和收益%%%%%
C_LA=sum([0.062,0.043,0.048]*Temp_shift.*C_de)+sum((S_IL1+S_IL2).*C_de);%%%负荷调用成本%%%%
C_buy=sum(sum(Pg).*C_e);
C_loss=sum(sum(I.*(R*ones(1,T))))*400;  %%%网损成本%%%% 
C_ess=250*sum(sum(p_dch)+sum(p_ch));  %%%储能调用成本%%%%
f2=C_LA+C_loss+C_ess-(B1+B2)+C_buy;
%%%%储能寿命损耗成本%%%%
n=sum(sum(u_dch + u_ch));
L=0;
for D=0:0.1:1 
    L=L+n/(71470*D^4-170100*D^3+146400*D^2-56500*D+12230);
end
C_ESS1=819000*2+2953000*0.375;
C_ESS2=0;
for t=1:1:10
    C_ESS2=C_ESS2+69000*2*((1+0.015)/(1+0.09))^t;
end
C_ESS=C_ESS1+C_ESS2;
C_day=C_ESS*L;       %%%%%储能寿命损耗成本%%%%%%
%%%%%%%%%%%%%%%
%%%%%%配电网综合收益%%%%%%
peak_0=PPload(9)+PPload(10)+PPload(11)+PPload(12)+PPload(13)+PPload(14)+PPload(19)+PPload(20);
peak_3=Pload3(9)+Pload3(10)+Pload3(11)+Pload3(12)+Pload3(13)+Pload3(14)+Pload3(19)+Pload3(20);
lamda3=(peak_0-peak_3)/peak_0;  %%%%场景三的削峰率
C_gridup=1;
delta_n3=((log10(1+lamda3))/log10(1+0.015));   %%%%%%延缓改造年限%%%%
F1=C_gridup*[1-((1+0.015)/(1+0.09))^delta_n3];  %%%%%%减少配电网升级改造费用%%%%



 结果一览  

下载链接

相关文章
|
29天前
|
算法
基于GA遗传优化的TSP问题最优路线规划matlab仿真
本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。
|
1月前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
1月前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
14天前
|
算法
基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真
该程序基于蚁群优化算法(ACO)为无人机(UAV)规划最优巡检路线,将无人机视作“蚂蚁”,巡检点作为“食物源”,目标是最小化总距离、能耗或时间。使用MATLAB 2022a版本实现,通过迭代更新信息素浓度来优化路径。算法包括初始化信息素矩阵、蚂蚁移动与信息素更新,并在满足终止条件前不断迭代,最终输出最短路径及其长度。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
23天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
2月前
|
数据采集 算法
基于PSO粒子群算法的三角形采集堆轨道优化matlab仿真
该程序利用PSO算法优化5个4*20矩阵中的模块采集轨迹,确保采集的物品数量及元素含量符合要求。在MATLAB2022a上运行,通过迭代寻优,选择最佳模块组合并优化轨道,使采集效率、路径长度及时间等综合指标最优。具体算法实现了粒子状态更新、需求量差值评估及轨迹优化等功能,最终输出最优轨迹及其相关性能指标。
|
2月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
123 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
2月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
95 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
2月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
71 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章

下一篇
无影云桌面