【两阶段鲁棒】计及需求响应的多能互补微网两阶段鲁棒优化matlab

简介: 【两阶段鲁棒】计及需求响应的多能互补微网两阶段鲁棒优化matlab

1 主要内容

该程序参考文献《多能互补微网两阶段鲁棒优化调度研究》,在考虑风光不确定集的基础上提出采用计及DR响应的多能互补微网两阶段鲁棒备用调度模型,深入研究电-气-冷-热联供型微网在充分运用新能源技术的效果,以期通过对系统鲁棒性分析实现多种能源设备的协同优化调度,有效应对多能互补微网系统的不确定性影响,同时提升系统的经济性和灵活性。

  • 算例模型

建立含电转气的多能互补微网经济调度模型,以微网系统运行费用最低作为目标,考虑多能微网系统存在的冷热电能量平衡约束以及相关设备运行约束。

  • 目标函数

通过建立多能互补微网日前-日内两阶段鲁棒优化模型,分析在系统风光不确定下的最佳经济调度方案,并考虑电网备用容量和IDR容量。日前阶段模型采用确定性调度,根据风电、光伏出力预测值,建立目标函数包括购售电成本、各类机组运行成本、备用成本以及IDR成本的调度模型,在该阶段充分考虑随机事件可能造成的影响而留有电网备用容量和IDR容量。日内阶段根据不确定集范围,调用备用资源确保多能微网系统安全稳定运行,该阶段通过对偶模型求解多能微网最恶劣运行场景,并将该结果反馈至日前阶段再次优化调度。经过两阶段的协同调度求解得到风光不确定性情况下的最佳优化结果,既保证了系统的安全性,又能得到最佳经济方案。

  • 第一阶段

  • 第二阶段

2 部分程序

clc;clear all;
parameter;
Z=[ones(8,1);zeros(40,1);ones(8,1);zeros(40,1)];%不确定变量初始值
UB=inf;%初始上界
kloop=10;%循环次数
Z0=zeros(4*T,kloop);
for kl=1:kloop
    yalmip('clear');
    Z0(:,kl)=Z;%更新不确定变量
    MP;%运行第一阶段
    LB=F;%更新下界
    yalmip('clear');
    dualtest;%运行第二阶段
    UB=min(UB,LB-yita+F2);%更新上界
    cul(kl)=UB-LB;%判断是否收敛
end
%结果
figure;
plot(cul,'LineWidth',1)
xlabel('迭代次数');
ylabel('UB-LB');
grid on
%典型日电转气
figure;
yg2q=[x0_Pegin;x0_Pmrin;x0_Phin]';
bar(yg2q);
xlabel('调度时段/h');
ylabel('功率/kW');
legend('电解槽出力','甲烷反应器出力','储氢罐输入功率');
%冷热电耦合
x0_Phfch=eta_hfch.*x0_Phout;
x0_Phfce=eta_hfce.*x0_Phout;
x0_Pgth=eta_gth.*x0_Pgtin;
x0_Pgte=eta_gte.*x0_Pgtin;
x0_Pgb=eta_gb.*x0_Pgbin;
figure;
yh=[x0_Phfch;x0_Pgth;x0_Pgb]';
bar(yh);
hold on
plot(x0_Phfce,'r-','LineWidth',1);
plot(x0_Pgte,'m-','LineWidth',1);
plot(eta_ac.*x0_Pacin,'b-p','LineWidth',1);
xlabel('调度时段/h');
ylabel('功率/kW');
h4=legend('氢燃料电池热输出','燃气轮机热输出','燃气锅炉输出','氢燃料电池电输出','燃气轮机电输出','吸收式制冷机输出功率');
set(h4, 'Orientation', 'horizon')
% set(h1, 'Box', 'off')
set(h4, 'NumColumns',2);
ylim([0 5500]);
%电功率平衡
figure;
yef=[-x0_Pbtc;-x0_Pegin;-x0_Pecin;min(x0_Pex,0)]';
b1=bar(yef,'stack');
b1(1).FaceColor = [0.1 0.5 0.9];
b1(2).FaceColor = [0.9 0.1 0.5];
b1(3).FaceColor = [0.5 0.9 0.1];
hold on
yez=[x0_Pbtd;max(x0_Pex,0);x0_Pw;x0_Pv;eta_gte.*x0_Pgtin;eta_hfce.*x0_Phout]';
b2=bar(yez,'stack');
b2(1).FaceColor = [0.1 0.5 0.9];
b2(2).FaceColor = [0.5,0.3,0.5];
b2(3).FaceColor = [1,0.2,1];
b2(4).FaceColor = [1,0.6,0.1];
b2(5).FaceColor = [0.2,0.5,0.2];
b2(6).FaceColor = [0.3,0.8,0.8];
b3=plot(Pel,'r','LineWidth',1.5);
h2=legend([b1(2:4),b2(1:6),b3],'电解槽','电制冷机','向电网供应功率','蓄电池','从电网吸收功率','风机','光伏','燃气轮机电功率','氢燃料电池电功率','电负荷');
set(h2, 'Orientation', 'horizon')
% set(h1, 'Box', 'off')
set(h2, 'NumColumns',2);
xlabel('调度时段/h');
ylabel('功率/kW');
ylim([-10000 25000]);
%热功率平衡
figure;
yhf=-x0_Pbthc;
b3=bar(yhf,'stack');
b3(1).FaceColor = [0.1 0.5 0.9];
hold on
yhz=[x0_Pbthd;eta_eh.*x0_Pehin]';
b4=bar(yhz,'stack');
b4(1).FaceColor = [0.1 0.5 0.9];
b5=plot(Phl,'r','LineWidth',1.5);
legend([b4(1:2),b5],'储热','余热锅炉','热负荷');
xlabel('调度时段/h');
ylabel('功率/kW');
%冷功率平衡
figure;
ycf=-x0_Pbtcc;
b3=bar(ycf,'stack');
b3(1).FaceColor = [0.1 0.5 0.9];
hold on
ycz=[x0_Pbtcd;eta_ec.*x0_Pecin;eta_ac.*x0_Pacin]';
b4=bar(ycz,'stack');
b4(1).FaceColor = [0.1 0.5 0.9];
b5=plot(Pcl,'r','LineWidth',1.5);
legend([b4(1:3),b5],'储冷','电制冷机','吸收式制冷机','冷负荷');
% legend('冷负荷');
xlabel('调度时段/h');
ylabel('功率/kW');
ylim([-1000 8000]);
%负荷及风光预测值
figure;
plot(Pel,'b-o','LineWidth',1.5);
hold on
plot(Phl,'r-*','LineWidth',1.5);
plot(Pcl,'g-.','LineWidth',1.5);
plot(Pwt,'c->','LineWidth',1.5);
plot(Ppv,'m--','LineWidth',1.5);
legend('电负荷','热负荷','冷负荷','风电预测值','光伏预测值');
xlabel('调度时段/h');
ylabel('功率/kW');
%鲁棒优化后风电出力
figure;
plot(Pwt,'m-','LineWidth',1.5)
hold on
plot(Pwt+Pwp,'m--','LineWidth',1.5)
plot(Pwt-Pwm,'m--','LineWidth',1.5)
plot(x0s(73:96,1),'b-','LineWidth',1.5)
legend('风电预测值','风电上限','风电下限','最恶劣场景');
xlabel('调度时段/h');
ylabel('功率/kW');
%光伏
figure;
plot(Ppv,'m-','LineWidth',1.5)
hold on
plot(Ppv+Pvp,'m--','LineWidth',1.5)
plot(Ppv-Pvm,'m--','LineWidth',1.5)
plot(x0s(97:120,1),'b-','LineWidth',1.5)
legend('光伏预测值','光伏上限','光伏下限','最恶劣场景');
xlabel('调度时段/h');
ylabel('功率/kW');
%电价
figure;
stairs(Cph,'LineWidth',1.5)
xlabel('调度时段/h');
ylabel('电价(元/(kWh))');
grid on
%储氢罐容量
figure;
bar(x0_Phin,'stack');
hold on
bar(-x0_Phout,'stack');
ylabel('功率/kW');
yyaxis right
plot(x0_Wh,'r--','LineWidth',1.5)
ylabel('储氢罐容量/kWh');
legend('储存氢气','释放氢气','储氢容量')
xlabel('调度时段/h');
grid on
%储冷容量
figure;
bar(x0_Pbtcc,'stack');
hold on
bar(-x0_Pbtcd,'stack');
ylabel('功率/kW');
yyaxis right
plot(x0_Wbtc,'r--','LineWidth',1.5)
ylabel('储冷罐容量/kWh');
legend('储存冷能','释放冷能','储冷容量')
xlabel('调度时段/h');
grid on
%储热容量
figure;
bar(x0_Pbthc,'stack');
hold on
bar(-x0_Pbthd,'stack');
ylabel('功率/kW');
yyaxis right
plot(x0_Wbth,'r--','LineWidth',1.5)
ylabel('储热罐容量/kWh');
legend('储存热能','释放热能','储热容量')
xlabel('调度时段/h');
grid on
%蓄电池容量
figure;
bar(x0_Pbtc,'stack');
hold on
bar(-x0_Pbtd,'stack');
ylabel('功率/kW');
yyaxis right
plot(x0_Wbt,'r--','LineWidth',1.5)
ylabel('蓄电池容量/kWh');
legend('储存电能','释放电能','蓄电池容量')
xlabel('调度时段/h');
grid on


3 程序结果

含保守度的迭代末次风电最恶劣场景图,在两阶段鲁棒优化过程中,随着主子问题迭代,二阶段可再生能源的最恶劣场景也会随之变化,将这些最恶劣场景叠加到一阶段进行综合优化求解,因此遇到有最恶劣场景图的可以注意一下,程序内部是不是实现了叠加循环。

4 下载链接


相关文章
|
15天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
12天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
12天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
14天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
216 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
139 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
105 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)