基于白鲸优化算法BWO的VMD-KELM光伏发电功率预测(matlab代码+可提供讲解)

简介: 基于白鲸优化算法BWO的VMD-KELM光伏发电功率预测(matlab代码+可提供讲解)

1 主要内容

该程序采用白鲸优化算法+变分模态分解+核极限学习机三种方法组合对短期光伏功率进行预测,当然,该方法同样适用于风电、负荷等方面的预测,通过采用原始数据进行训练和测试,验证了方法的有效性,同时,该程序包内还包括变分模态分解+核极限学习机(vmd+kelm)以及核极限学习机(kelm)预测对比程序,方便对比学习,程序包括必要注释,通用性强!

  • 白鲸优化算法BWO

白鲸优化(BWO)算法一种基于群体的元启发式算法,用于解决优化问题。BWO的灵感来自白鲸的行为,包括三个阶段:探索阶段,开发阶段和鲸鱼坠落阶段。

  • 变分模态分解VMD

核极限学习机KELM

KELM 是在传统 ELM 的基础上延展而来,用核映射代替随机映射,进而将高复杂低维的空间问题转化为高维空间内积运算问题,相较于 ELM 具有更强的网络输出稳定性和泛化能力。在KELM算法中,核参数g 和正则化系数C 是影响KELM预测性能的重要因素。在 KELM 训练学习过程中,核参数 g 具有调节经验风险比例和置信区间的作用,而正则化系数C 用于控制训练误差所占比例的范围,若核参数和正则化系数选择不当,则会使 KELM 的泛化能力大大减弱,从而导致网络输出不稳定,因此对 KELM的核参数和正则化系数进行优化十分必要。因此,这两个参数需要采用智能算法进行参数优化。

2 部分代码

%% 优化(调用函数)
[Best_pos,Best_score,Convergence_curve]=BWO(pop,Max_iteration,lb,ub,dim,fun);
x=Best_pos  ;                 %最优个体 
C = x(1);                    %正则化系数
Kernel_type = 'RBF';             %核函数名
Kernel_para = x(2);                    %核函数参数矩阵
%%
xunlian=[];
cesi=[];
for mode=1:K
    shuchu1 = uoutput(mode,:)';
    input_train =shuru(nn(1:geshu),:);input_train=input_train';
    output_train=shuchu1(nn(1:geshu),:);output_train=output_train';
    input_test =shuru(nn((geshu+1):end),:);input_test=input_test';
    output_test=shuchu1(nn((geshu+1):end),:);output_test=output_test';
    %%
    %样本输入输出数据归一化
    [aa,bb]=mapminmax([input_train input_test]);
    [cc,dd]=mapminmax([output_train output_test]);
    inputn=mapminmax('apply',input_train,bb);
    outputn=mapminmax('apply',output_train,dd);
    
    x_test=mapminmax('apply',input_test,bb);
    y_test=mapminmax('apply',output_test,dd);
    
    train_x=inputn;
    train_y=outputn;
    test_x=x_test;
    test_y=y_test ;
    
    [predict_trainy, predict_testy] = KELM(train_x,train_y,test_x,test_y, C, Kernel_type, Kernel_para);
    
    % 测试集
    test_s1=mapminmax('reverse',predict_testy,dd);%反归一化
    % 训练集
    train_s1=mapminmax('reverse',predict_trainy,dd);%反归一化
    xunlian=[xunlian;train_s1];
    cesi=[cesi;test_s1;];
end



3 程序结果


相关文章
|
5天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
6天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
6天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
6天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
23 3
|
6天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
124 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)