基于白鲸优化算法BWO的VMD-KELM光伏发电功率预测(matlab代码+可提供讲解)

简介: 基于白鲸优化算法BWO的VMD-KELM光伏发电功率预测(matlab代码+可提供讲解)

1 主要内容

该程序采用白鲸优化算法+变分模态分解+核极限学习机三种方法组合对短期光伏功率进行预测,当然,该方法同样适用于风电、负荷等方面的预测,通过采用原始数据进行训练和测试,验证了方法的有效性,同时,该程序包内还包括变分模态分解+核极限学习机(vmd+kelm)以及核极限学习机(kelm)预测对比程序,方便对比学习,程序包括必要注释,通用性强!

  • 白鲸优化算法BWO

白鲸优化(BWO)算法一种基于群体的元启发式算法,用于解决优化问题。BWO的灵感来自白鲸的行为,包括三个阶段:探索阶段,开发阶段和鲸鱼坠落阶段。

  • 变分模态分解VMD

核极限学习机KELM

KELM 是在传统 ELM 的基础上延展而来,用核映射代替随机映射,进而将高复杂低维的空间问题转化为高维空间内积运算问题,相较于 ELM 具有更强的网络输出稳定性和泛化能力。在KELM算法中,核参数g 和正则化系数C 是影响KELM预测性能的重要因素。在 KELM 训练学习过程中,核参数 g 具有调节经验风险比例和置信区间的作用,而正则化系数C 用于控制训练误差所占比例的范围,若核参数和正则化系数选择不当,则会使 KELM 的泛化能力大大减弱,从而导致网络输出不稳定,因此对 KELM的核参数和正则化系数进行优化十分必要。因此,这两个参数需要采用智能算法进行参数优化。

2 部分代码

%% 优化(调用函数)
[Best_pos,Best_score,Convergence_curve]=BWO(pop,Max_iteration,lb,ub,dim,fun);
x=Best_pos  ;                 %最优个体 
C = x(1);                    %正则化系数
Kernel_type = 'RBF';             %核函数名
Kernel_para = x(2);                    %核函数参数矩阵
%%
xunlian=[];
cesi=[];
for mode=1:K
    shuchu1 = uoutput(mode,:)';
    input_train =shuru(nn(1:geshu),:);input_train=input_train';
    output_train=shuchu1(nn(1:geshu),:);output_train=output_train';
    input_test =shuru(nn((geshu+1):end),:);input_test=input_test';
    output_test=shuchu1(nn((geshu+1):end),:);output_test=output_test';
    %%
    %样本输入输出数据归一化
    [aa,bb]=mapminmax([input_train input_test]);
    [cc,dd]=mapminmax([output_train output_test]);
    inputn=mapminmax('apply',input_train,bb);
    outputn=mapminmax('apply',output_train,dd);
    
    x_test=mapminmax('apply',input_test,bb);
    y_test=mapminmax('apply',output_test,dd);
    
    train_x=inputn;
    train_y=outputn;
    test_x=x_test;
    test_y=y_test ;
    
    [predict_trainy, predict_testy] = KELM(train_x,train_y,test_x,test_y, C, Kernel_type, Kernel_para);
    
    % 测试集
    test_s1=mapminmax('reverse',predict_testy,dd);%反归一化
    % 训练集
    train_s1=mapminmax('reverse',predict_trainy,dd);%反归一化
    xunlian=[xunlian;train_s1];
    cesi=[cesi;test_s1;];
end



3 程序结果


相关文章
|
6天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
114 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法
基于电导增量MPPT控制算法的光伏发电系统simulink建模与仿真
本课题基于电导增量MPPT控制算法,使用MATLAB2022a的Simulink进行光伏发电系统的建模与仿真,输出系统电流、电压及功率。电导增量调制(IC)算法通过检测电压和电流变化率,实时调整光伏阵列工作点,确保其在不同光照和温度条件下始终处于最大功率输出状态。仿真结果展示了该算法的有效性,并结合PWM技术调节逆变流器占空比,提高系统效率和稳定性。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章