碳交易机制下考虑需求响应的综合能源系统优化运行(matlab代码)

简介: 碳交易机制下考虑需求响应的综合能源系统优化运行(matlab代码)

1 主要内容

该程序复现文献《碳交易机制下考虑需求响应的综合能源系统优化运行》,解决碳交易机制下考虑需求响应的综合能源系统优化运行问题,根据负荷响应特性将需求响应分为价格型和替代型 2 类, 分别建立了基于价格弹性矩阵的价格型需求响应模型,及考虑用能侧电能和热能相互转换的替代型需求响应模型; 其次, 采用基准线法为系统无偿分配碳排放配额,并考虑燃气轮机和燃气锅炉的实际碳排放量,构建一种面向综合能源系统的碳交易机制; 最后,以购能成本、碳交易成本及运维成本之和最小为目标函数,建立综合能源系统低碳优化运行模型,并通过 4 类典型场景对所提模型的有效性进行了验证。程序采用matlab+yalmip(cplex作为求解器)求解。

架构模型:

在该系统中,电能和气能分别由上级电网、气网供 应,从上级气网购气用来供给热电 联产装置( combined heat and power,CHP) 和燃气锅炉( gas boiler,GB) ,剩余电能可出售给上级电网; 能量耦合设备有 CHP、热泵( heat pump,HP) 和 GB,能实现电热能 量 双 向 流 动; CHP 由 燃 气 轮 机 ( gas turbine,GT) 、余热锅炉( waste heat boiler,WHB) 和基于有机朗肯循环( organic Rankine cycle,ORC) 的低温余热发电装置组成,运行方式为热电解耦,该运行方式能适应系统不同运行工况; HP 和 GB 消纳风电并承担部分热负荷。引入 DR 可以平抑负荷曲线波动,实现电热的交互耦合、削峰填谷并降低运行成本。

需求响应模型:

本程序将价格型需求响应和替代型需求响应均进行了实现。

目标函数:

对比算例设计:

程序采用四种对比算例,分别是仅包括碳交易、碳交易+需求响应、仅包括需求响应、均不包括四种情况。

2 部分程序

%% 碳交易机制下考虑需求响应的综合能源系统优化运行——魏震波
%场景 2: 碳交易机制下考虑需求响应
clc;clear;close all;% 程序初始化
%% 读取数据
shuju=xlsread('carbon+DR数据.xlsx'); %把一天划分为24小时
load_e=shuju(2,:); %初始电负荷
load_h=shuju(3,:); %初始热负荷
P_PV=shuju(4,:);    %光电预测
P_WT=shuju(5,:);    %风电预测
pe_b=shuju(6,:); %需求响应前电价
pe_a=shuju(7,:); %需求响应电价
ph_b=shuju(8,:); %需求响应前热价
ph_a=shuju(9,:); %需求响应热价
%% 需求侧定义变量
Z=zeros(24,24); %需求弹性矩阵
e_W1=0.5;e_W2=0.3;e_W3=0.15;e_W4=0.05;%约束:固定、可转移、可消减、可替代负荷占比50%,30%,15%,5% %这里进行4. 2. 2 需求响应灵敏度分析
h_W1=0.5;h_W2=0.2;h_W3=0.2;h_W4=0.1;%约束:固定、可转移、可消减、可替代负荷占比50%,30%,15%,5%  %这里进行4. 2. 2 需求响应灵敏度分析
Psl_e=zeros(1,24);%转移电负荷量
Pcl_e=zeros(1,24);%消减电负荷量
Prl_e=zeros(1,24);%电负荷被替代量
Psl_h=zeros(1,24);%转移热负荷量
Pcl_h=zeros(1,24);%消减热负荷量
Prl_h=zeros(1,24);%热负荷被替代量
P2H=1.83; %电转热系数
OP_load_e=zeros(1,24);%优化后的电负荷
OP_load_h=zeros(1,24);%优化后的热负荷
%% IES电网交互电价
price_buy_grid=shuju(7,:); %向电网购电价
price_sell_grid=shuju(10,:); %向电网售电价
%% 供应测定义机组变量
%CHP
P_GT=sdpvar(1,24,'full');%燃气轮机输出功率
e_GT=0.3;%燃气轮机供电效率
h_GT=0.4;%燃气轮机供热效率
P_WHB=sdpvar(1,24,'full');%余热锅炉输出功率
r_WHB=0.80;%热回收效率
P_ORC=sdpvar(1,24,'full');%ORC输出功率
r_ORC=0.80;%ORC效率
P_GB=sdpvar(1,24,'full');%燃气锅炉输出功率
h_GB=0.9;%燃气锅炉供热效率
P_HP=sdpvar(1,24,'full');%热泵输入功率
COP_HP=4.4;%电制冷机冷系数
 B_grid=sdpvar(1,24,'full');%购电电量
 S_grid=sdpvar(1,24,'full');%售电电量
 B_grid_sign=binvar(1,24,'full'); %购电标志
ES_char=sdpvar(1,24,'full');%储电系统充电
ES_dischar=sdpvar(1,24,'full');%储电系统放电
ES_char_sign=binvar(1,24,'full');%储电系统充电标志
ES_max=400; ES_loss=0.01;ES_c_char=0.95;ES_c_discharge=0.9;%电储能最大容量;自损系数;充、放能效率
HS_char=sdpvar(1,24,'full');%储热系统充热
HS_dischar=sdpvar(1,24,'full');%储热系统放热
HS_char_sign=binvar(1,24,'full'); %储热系统充热标志
HS_max=400; HS_loss=0.01;HS_c_char=0.95;HS_c_discharge=0.9;%热储能最大容量;自损系数;充、放能效率;原文0.8
%% DR-需求侧响应优化
Z_e=ElasticityMatrix(pe_a); %电价需求弹性矩阵
Z_e_CL=diag(diag(Z_e)); %消减电负荷弹性矩阵,对角阵
Z_e_SL=Z_e-Z_e_CL; %转移电负荷弹性矩阵
Z_h=ElasticityMatrix(ph_a); %热价需求弹性矩阵
Z_h_CL=diag(diag(Z_h)); %消减热负荷弹性矩阵,对角阵
Z_h_SL=Z_h-Z_h_CL; %转移热负荷弹性矩阵
%价格型需求响应
[Psl_e,Pcl_e]=IBDR(Z_e_SL,Z_e_CL,load_e,pe_a,pe_b,e_W2,e_W3);
[Psl_h,Pcl_h]=IBDR(Z_h_SL,Z_h_CL,load_h,ph_a,ph_b,h_W2,h_W3);
%替代型需求响应
[Prl_e,Prl_h]=RBDR(pe_a,ph_a,e_W4,h_W4);
OP_load_e=load_e+Psl_e+Pcl_e-Prl_e+Prl_h/P2H;%优化后的电负荷
OP_load_h=load_h+Psl_h+Pcl_h-Prl_h+Prl_e*P2H;%优化后的热负荷
%%  IES供应侧储能约束     
ES_start=80;
HS_start=50;  %电储能和热储能的初始能量
for i=1:24
    ES(1,i)=ES_start+ES_char(1,i)*ES_c_char-ES_dischar(1,i)/ES_c_discharge; %储电初始容量约束
    ES_start=ES(1,i);
end
for i=1:23
    ES(1,i+1)= ES(1,i)*(1-ES_loss)+ES_char(1,i)*ES_c_char-ES_dischar(1,i)/ES_c_discharge; %储电容量约束
end
ES_start=ES(1,24);
for i=1:24
    EH(1,i)=HS_start+HS_char(1,i)*HS_c_char-HS_dischar(1,i)/HS_c_discharge; %储热初始容量约束
    HS_start=EH(1,i);
end
for i=1:23
    EH(1,i+1)= EH(1,i)*(1-HS_loss)+HS_char(1,i)*HS_c_char-HS_dischar(1,i)/HS_c_discharge; %储热容量约束
end
HS_start=EH(1,24);
%% IES供应侧优化
% 约束条件
C=[];
%%电储能设备运行约束
 for i=1:24  %运行约束
     C=[C,0<=ES_char(1,i)<=250*ES_char_sign(1,i)];
     C=[C,0<=ES_dischar(1,i)<=250*(1-ES_char_sign(1,i))];
 end
 
 for i=1:24 %余量约束
     C=[C,0<=ES(1,i)<=400];
 end
     
 %热储能设备运行约束
 for i=1:24  %运行约束
     C=[C,0<=HS_char(1,i)<=250*HS_char_sign(1,i)];
     C=[C,0<=HS_dischar(1,i)<=250*(1-HS_char_sign(1,i))];
 end
 for i=1:24 %余量约束
     C=[C,0<=EH(1,i)<=400];
 end
     
 a=0.5; %这里进行4. 2. 3 GT 产热分配比例的影响
%各个机组约束
for i=1:24   
    C = [C,0<=P_GT(i)<=4000];%燃气轮机上下限约束
    C = [C,0<=P_GB(i)<=1000];%燃气锅炉上下限约束 
    C = [C,0<=P_HP(i)<400];%热泵上下限约束
    C = [C,0<=P_ORC(i)<=400];%ORC上下限约束
    C = [C,P_GT(i)*h_GT*r_WHB*a<=P_WHB(i)<=P_GT(i)*h_GT*r_WHB*a];%余热回收分配公式,a为分配系数
    C = [C,P_GT(i)*h_GT*r_ORC*(1-a)<= P_ORC(i)<=P_GT(i)*h_GT*r_ORC*(1-a)];
    
    C = [C, 0<= B_grid(i)<= B_grid_sign*1500];
   C = [C, 0<= S_grid(i)<=(1-B_grid_sign)*1500]; %外部电网联络线约束
end


3 程序结果

上述图为case2的出图结果,其他场景出图类型一致,不再重复粘贴。


相关文章
|
17天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
152 80
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
3天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
2天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
13天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
10天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
13天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
14天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
1月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
165 15
|
7天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。