深度学习|改进两阶段鲁棒优化算法i-ccg

简介: 深度学习|改进两阶段鲁棒优化算法i-ccg

1 主要内容

自从2013年的求解两阶段鲁棒优化模型的列和约束生成算法(CC&G)被提出之后,基本没有实质性的创新,都是围绕该算法在各个领域的深度应用,有些小的变形应用也都是基于模型应用,比如嵌套CCG等。所以这些年大热的CC&G研究在算法改进方面鲜有成就,电气专业同学在研究源荷不确定性的过程中基本都要学习该算法,明确求解流程、主子问题研究内容以及对偶、kkt条件等,现给大家推荐一个新鲜出炉的改进算法i-CCG。

2 改进算法

2.1  CC&G算法的优势

一般两阶段鲁棒优化调度模型是 min-max-min 形式的非凸优化问题,难以直接求解。目前常用 Benders 分解或 C&CG 算法将该类型问题转化为包含 min 主问题和 max-min 子问题的两阶段优化。若模型第三层仅包含连续变量,则 max-min子问题可通过强对偶理论或 KKT(Karush-Kuhn-Tucker)条件等效为单层max问题,此时通过主问题和子问题的迭代计算即可求解出优化结果。相较于 Benders分解,C&CG 算法能在较少的迭代次数内达到收敛,其求解效率较高,主要原因为:

1)C&CG 算法在求解子问题时对场景进行严格辨识以缩减模型求解的搜索域;

2)C&CG 算法在求解主问题时保持了主问题的原始模型架构,而 Benders分解利用对偶割平面构建主问题,破坏了原始模型架构,增加了模型计算量。

因此 C&CG 算法已经成为求解两阶段鲁棒优化问题的主要方法。

2.2 i-CCG算法简介

该算法是在2023年刚发表的文章《An inexact column-and-constraint generation method to solve two-stage robust optimization problems》提出来的,有兴趣同学可以下载学习一下,因为是刚发布的算法,用该算法建模型、求解、对比分析和增加小的改动都会提高文章的创新性,解决发表文章难的问题。

目的:该算法是为了解决CCG算法应用于大规模求解或者较难的模型求解速度慢的难题,虽然通过牺牲求解精度来提升求解速度,但是通过迭代参数设置以及求解步骤能够保证最终的结果收敛于最优解。

算法步骤:传统CCG的求解步骤如下:

研究过的同学应该比较了解,传统两阶段鲁棒主要是主子问题的循环迭代,子问题需要通过强对偶或者KKT条件得到最恶劣运行工况,通过增加变量的形式带入主问题,通过迭代获得最优解。整个逻辑比较简单,容易理解,虽然程序语言实现过程中会遇到各种坑,但是基本思路还是挺容易理解的。

i-CCG算法步骤:

该算法初始阶段通过牺牲求解精度(设置emp的值)来达到快速求解的目的,在循环迭代过程中增加了不精确求解变量(相当于在传统CCG算法中增加了一个缓冲层),并对求解的状态进行识别,不同求解状态下会进入不同的循环阶段,直至收敛到阈值以下。

3 结果对比

以考虑需求响应的6节点电网两阶段鲁棒优化调度程序为例进行算法验证,常规算法下的迭代收敛曲线如下:

i-CCG算法的收敛曲线如下:

很显然,该改进算法的性能确实要好很多,通过实际程序求解时间都能明显感受到i-CCG算法求解速度快得多,因此,大家可以借用新算法开展深入研究和应用,祝大家SCI/EI/核心随便就能中!

相关文章
|
9天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品加工优化的深度学习模型
使用Python实现智能食品加工优化的深度学习模型
104 59
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
6天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
21 2
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
25 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
5天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
5天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
25 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 算法
深度学习中的模型优化策略
【10月更文挑战第35天】在深度学习的海洋中,模型优化是那把能够引领我们抵达知识彼岸的桨。本文将从梯度下降法出发,逐步深入到动量、自适应学习率等高级技巧,最后通过一个实际代码案例,展示如何应用这些策略以提升模型性能。
|
11天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
22天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
21天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。

热门文章

最新文章