互动环境下分布式电源与电动汽车充电站的优化配置方法研究-全文复现matlab

简介: 互动环境下分布式电源与电动汽车充电站的优化配置方法研究-全文复现matlab

一、主要内容

本程序包含论文二、三、四、五共五章算例内容,每章内容如下:

第二章的主要研究内容为计及光伏电站快速无功响应特性的分布式电源优化配置方法。考虑越来越多的敏感负荷接入配电系统,以及 PV-STATCOM 这一将光伏逆变器用作 STATCOM 以提供快速无功响应功能的新技术,本章提出了一类加权电压支撑能力指标以量化光伏电站在紧急状态下对敏感负荷节点电压恢复效率的影响,并将其嵌入到分布式电源优化配置模型中。对应的算例结果表明,基于这一改进模型得到的分布式电源配置方案可以有效提高瞬时故障后重要电力节点的电压恢复效率,减少电压暂降等电能质量问题给敏感负荷带来的损失。

 

第三章的主要研究内容为含多类型充电桩的电动汽车充电站优化配置方法。随着电动汽车快充技术的发展,越来越多的不同类型不同功率的充电设施接入了配电系统。这些充电设施在满足电动汽车车主多样化的充电需求的同时,也改变了电动汽车负荷的时空分布情况,从而给电动汽车充电站的优化配置带来了新的挑战。基于这一新趋势,本章提出了一种含多类型充电桩的电动汽车充电站优化配置模型,及其相应的简化处理方法,并分析了同时配置多种功率充电桩所带来的经济效益。

第四章的主要研究内容为考虑充电负荷空间可调度特性的分布式电源与电动汽车充电站联合配置方法。随着手机、平板电脑等移动智能终端的普及,以及无线通讯技术的发展,越来越多的汽车车主依赖于实时导航技术决定自己的驾驶及泊车行为。对电动汽车而言,泊车地点在很大程度上决定了其充电行为的发生处所,即对应的充电负荷的接入位置。基于这一背景,本章认为实时导航技术的普及使得电动汽车负荷在一定程度上、一定空间范围内是可调度的,并建立了相应的分布式电源与电动汽车充电站联合配置模型,分析了这种空间可调度特性对分布式电源与电动汽车充电站配置方案的影响。

第五章的主要研究内容为单向/双向 V2G 环境下分布式电源与电动汽车充电站联合配置方法。V2G 技术的发展使得电动汽车负荷成为一类可控的资源,能够为电网运行提供峰荷转移、电压调节、旋转备用等诸多类型的辅助服务。这一技术的出现,大大增加了电动汽车与电网间的互动频率及互动深度,对传统的分布式电源与电动汽车充电站优化配置方法形成了挑战。基于这一背景,本章提出了单向/双向 V2G 环境下分布式电源与电动汽车充电站联合配置模型,分别分析了无序充电模式、单向 V2G 模式、双向 V2G模式对分布式电源与电动汽车充电站配置方案的影响。

二、部分代码

%构建负荷矩阵
for i=1:nb
   if sty_jd(i)==1
       pload(i,1:T)=P1(i).*pc_jm_w;%春 工作日
       pload(i,T+1:2*T)=P1(i).*pc_jm_wd;%春 周末
       pload(i,2*T+1:3*T)=P1(i).*px_jm_w;%夏 工作日
       pload(i,3*T+1:4*T)=P1(i).*px_jm_wd;%夏 周末
       pload(i,4*T+1:5*T)=P1(i).*pq_jm_w;%秋 工作日
       pload(i,5*T+1:6*T)=P1(i).*pq_jm_wd;%秋 周末
       pload(i,6*T+1:7*T)=P1(i).*pd_jm_w;%冬 工作日
       pload(i,7*T+1:8*T)=P1(i).*pd_jm_wd;%冬 周末
   elseif sty_jd(i)==2
       pload(i,1:T)=P1(i).*pc_sc_w;%春 工作日
       pload(i,T+1:2*T)=P1(i).*pc_sc_wd;%春 周末
       pload(i,2*T+1:3*T)=P1(i).*px_sc_w;%夏 工作日
       pload(i,3*T+1:4*T)=P1(i).*px_sc_wd;%夏 周末
       pload(i,4*T+1:5*T)=P1(i).*pq_sc_w;%秋 工作日
       pload(i,5*T+1:6*T)=P1(i).*pq_sc_wd;%秋 周末
       pload(i,6*T+1:7*T)=P1(i).*pd_sc_w;%冬 工作日
       pload(i,7*T+1:8*T)=P1(i).*pd_sc_wd;%冬 周末
   else
       pload(i,1:T)=P1(i).*pc_bg_w;%春 工作日
       pload(i,T+1:2*T)=P1(i).*pc_bg_wd;%春 周末
       pload(i,2*T+1:3*T)=P1(i).*px_bg_w;%夏 工作日
       pload(i,3*T+1:4*T)=P1(i).*px_bg_wd;%夏 周末
       pload(i,4*T+1:5*T)=P1(i).*pq_bg_w;%秋 工作日
       pload(i,5*T+1:6*T)=P1(i).*pq_bg_wd;%秋 周末
       pload(i,6*T+1:7*T)=P1(i).*pd_bg_w;%冬 工作日
       pload(i,7*T+1:8*T)=P1(i).*pd_bg_wd;%冬 周末
   end
end
qload=repmat(Q1,1,8*T);
num_w=[];num_wd=[];
for i=1:nb%分别计算工作日和周末时序停车数量
    if sty_jd(i)==1
    num_w(i,:)=round(num_peak(i).*arr_jm_w./max(arr_jm_w));
    num_wd(i,:)=round(num_peak(i).*arr_jm_wd./max(arr_jm_wd));
    %停车时长分布,样本数量不足,没法用停车时长概率曲线来计算,随机产生停车时长
    elseif sty_jd(i)==2
    num_w(i,:)=round(num_peak(i).*arr_sc_w./max(arr_sc_w));
    num_wd(i,:)=round(num_peak(i).*arr_sc_wd./max(arr_sc_wd));
    else
    num_w(i,:)=round(num_peak(i).*arr_bg_w./max(arr_bg_w));
    num_wd(i,:)=round(num_peak(i).*arr_bg_wd./max(arr_bg_wd));
    end
end
%建立节点电动汽车矩阵
sum_num_w=sum(num_w);
sum_num_wd=sum(num_wd);
max_num=max(sum_num_w,sum_num_wd);
% k=1;
% for t=1:T
%     k1=1;
%     for i=1:nb
%         if stay_time_w(i,t)~=0%计算每个电动汽车的充电时长
%             for y=1:stay_time_w(i,t)
%                 st(k1,t)=t*0.25;
%             end
%             k1=k1+1;
%         end
%     end
% end
k=1;
for t=1:T
    for i=1:nb
    if num_w(i,t)~=0
       for jj=1:num_w(i,t)
           soc=rand;%(0,1)均匀分布
           st(k)=round(1+95*rand)*0.25;%充电时长
            if soc<0.9
                linf=find(distance(i,:)==min(distance(i,:)));
        evjd_w(k,:)=[t,i,soc,linf(1),min(st(k),prl*(1-soc)/pev),sty_jd(i),min(distance(i,:))];%时间,节点,soc,充电节点,充电时长,节点区域类型,调度距离
                k=k+1;
            end
%             if gdch(i)~=0
%                 evjd_w(k,4)=gdch(i);
%             end
 
 
        end
    end
    end
end
%周末情况
 k=1;
for t=1:T
    for i=1:nb
    if num_w(i,t)~=0
       for jj=1:num_w(i,t)
           soc=rand;
           st(k)=round(1+95*rand)*0.25;%充电时长
            if soc<0.9
                linf=find(distance(i,:)==min(distance(i,:)));
        evjd_wd(k,:)=[t,i,soc,linf(1),min(st(k),prl*(1-soc)/pev),sty_jd(i),min(distance(i,:))];%时间,节点,soc,充电节点,充电时长,节点区域类型,调度距离
                k=k+1;
            end
%             if gdch(i)~=0
%                 evjd_wd(k,4)=gdch(i);
%             end
 
 
        end
    end
    end
end
 
 
%% 1.设参
branch = mpc.branch;
branch(:,3) = branch(:,3)*100/(12.66^2);%求阻抗标幺值
r=real(branch(:,3));
x=imag(branch(:,3));
r=r(1:32);
x=x(1:32);
upstream=zeros(nb,nl);%代表流入节点支路
dnstream=zeros(nb,nl);%代表流出节点支路
for i=1:32
    upstream(i,i)=1;
end
for i=[1:16,18:20,22:23,25:31]
    dnstream(i,i+1)=1;
end
dnstream(1,18)=1;
dnstream(2,22)=1;
dnstream(5,25)=1;
dnstream(33,1)=1;
 
 
Vmax=[1.05*1.05*ones(32,1);1.05*1.05*ones(1,1)];
Vmin=[0.95*0.95*ones(32,1);1.05*1.05*ones(1,1)];
Pgmax=[zeros(32,1);100.*ones(1,1)];
Qgmax=[zeros(32,1);100.*ones(1,1)];
%定义变量
V = sdpvar(nb,8*T);%电压的平方
I = sdpvar(nl,8*T);%电流的平方
P = sdpvar(nl,8*T);%线路有功
Q = sdpvar(nl,8*T);%线路无功
Pg = sdpvar(nb,8*T);%发电机有功
Qg = sdpvar(nb,8*T);%发电机无功
Nev = intvar(7,1);%备选节点充电桩数量
Npv = intvar(8,1);%光伏节点安装数量
%pv = sdpvar(nb,8*T);
qv = sdpvar(nb,8*T);
%sv = sdpvar(nb,8*T);
Ng = intvar(8,1);%燃气轮机安装数量
pg = intvar(nb,8*T);
Constraints = [];
%工作日充电桩情况
s_sumev=zeros(7,T);
[at,~]=size(evjd_w);
for k=1:at
  for i=1:7
   for t=1:T
       if evjd_w(k,4)==i && evjd_w(k,1)==t
        s_sumev(i,t)=s_sumev(i,t)+1;%计算节点充电电动汽车数量
       end
   end
  end
end
%周末充电站情况
s_sumevd=zeros(7,T);
[at,~]=size(evjd_wd);
for k=1:at
  for i=1:7
   for t=1:T
       if evjd_wd(k,4)==i && evjd_wd(k,1)==t
        s_sumevd(i,t)=s_sumevd(i,t)+1;%计算节点充电电动汽车数量
       end
   end
  end
end

三、程序链接

有需要的可以留言。

目录
打赏
0
3
3
0
65
分享
相关文章
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
136 20
基于神经网络逆同步控制方法的两变频调速电机控制系统matlab仿真
本课题针对两电机变频调速系统,提出基于神经网络a阶逆系统的控制方法。通过构造原系统的逆模型,结合线性闭环调节器实现张力与速度的精确解耦控制,并在MATLAB2022a中完成仿真。该方法利用神经网络克服非线性系统的不确定性,适用于参数变化和负载扰动场景,提升同步控制精度与系统稳定性。核心内容涵盖系统原理、数学建模及神经网络逆同步控制策略,为工业自动化提供了一种高效解决方案。
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式
本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。
199 0
|
9月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
333 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
204 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
292 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章