幻方开源第二代MoE模型 DeepSeek-V2,魔搭社区推理、微调最佳实践教程

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 5月6日,幻方继1月份推出首个国产MoE模型,历时4个月,带来第二代MoE模型DeepSeek-V2,并开源了技术报告和模型权重,魔搭社区可下载体验。

导读

5月6日,幻方继1月份推出首个国产MoE模型,历时4个月,带来第二代MoE模型DeepSeek-V2,并开源了技术报告和模型权重,魔搭社区可下载体验。

技术报告:

https://github.com/deepseek-ai/DeepSeek-V2/blob/main/deepseek-v2-tech-report.pdf

DeepSeek-V2未遵循业界普遍采用的“类LLaMA的Dense结构”和“类Mistral的Sparse结构”,而采取了对模型框架的全面创新。该模型引入了MLA(Multi-head Latent Attention)架构,这是一种与MHA(Multi-Head Attention)相媲美的技术,能显著降低计算量和推理时的内存使用。同时,自研Sparse结构DeepSeekMoE极大降低了计算量,二者的结合使模型性能得到了大幅提升。(详情可查看技术报告和开源代码)

官方同步,DeepSeek-V2以236B总参数、21B激活,大致达到70B~110B Dense的模型能力,同时消耗的显存(KV Cache)只有同级别Dense模型的1/5~1/100,每token成本大幅降低。实际部署在8卡H800机器上,输入吞吐量超过每秒10万tokens,输出超过每秒5万tokens。

性能方面,在目前大模型主流榜单中,DeepSeek-V2均表现出色:

  • 中文综合能力(AlignBench)开源模型中最强,与GPT-4-Turbo,文心4.0等闭源模型在评测中处于同一梯队
  • 英文综合能力(MT-Bench)与最强的开源模型LLaMA3-70B同处第一梯队,超过最强MoE开源模型Mixtral 8x22B
  • 知识、数学、推理、编程等榜单结果也位居前列
  • 支持128K上下文窗口

和DeepSeek 67B相比,DeepSeek-V2节约了42.5%训练成本,推理的KV Cache节约了93.3%,最大吞吐是之前的576%。

image.png

模型链接和下载

DeepSeek-V2系列模型现已在魔搭ModelScope社区开源,包括:

DeepSeek-V2-Chat

https://modelscope.cn/models/deepseek-ai/DeepSeek-V2-Chat

DeepSeek-V2

https://modelscope.cn/models/deepseek-ai/DeepSeek-V2

社区支持直接下载模型的repo:

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('deepseek-ai/DeepSeek-V2-Chat')

模型推理

推理代码:

import torch
from modelscope import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, AutoConfig
model_name = "deepseek-ai/DeepSeek-V2-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# `max_memory` should be set based on your devices
max_memory = {i: "75GB" for i in range(8)}
model_config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
model_config._attn_implementation='eager'
model = AutoModelForCausalLM.from_pretrained(model_name, config=model_config, trust_remote_code=True, device_map="auto", torch_dtype=torch.bfloat16, max_memory=max_memory)
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
messages = [
    {"role": "user", "content": "Write a piece of quicksort code in C++"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)

推理生成样例:

Sure, here is a simple implementation of the quicksort algorithm in C++:
```cpp
#include <iostream>
#include <vector>
using namespace std;
int partition(vector<int>& arr, int low, int high) {
    int pivot = arr[high];
    int i = (low - 1);
    for (int j = low; j <= high - 1; j++) {
        if (arr[j] < pivot) {
            i++;
            swap(arr[i], arr[j]);
        }
    }
    swap(arr[i + 1], arr[high]);
    return (i + 1);
}
void quickSort(vector<int>& arr, int low, int high) {
    if (low < high) {
        int pi = partition(arr, low, high);
        quickSort(arr, low, pi - 1);
        quickSort(arr, pi + 1, high);
    }
}
int main() {
    vector<int> arr = {10, 7, 8, 9, 1, 5};
    int n = arr.size();
    quickSort(arr, 0, n - 1);
    cout << "Sorted array: \n";
    for(int i = 0; i < n; i++) {
        cout << arr[i] << " ";
    }
    return 0;
}
```
This code sorts an array of integers using the quicksort algorithm. The `quickSort` function is the main function that recursively sorts the array. The `partition` function is used to partition the array around a pivot element and return the index of the pivot element. The elements smaller than the pivot are moved to its left and the elements larger are moved to its right.

推理占用:

image.png

模型微调和微调后推理

我们使用swift来对模型进行微调swift是魔搭社区官方提供的LLM微调推理框架。

微调代码开源地址:https://github.com/modelscope/swift

我们使用数据集 self-cognition进行微调,该数据集的任务是:改变模型的自我认知。

环境准备:

git clone https://github.com/modelscope/swift.git
cd swift
pip install -e .[llm]

微调脚本: (LoRA)

默认只对LLM部分的qkv进行lora微调,如果你想对LLM部分的所有linear进行微调,可以指定`--lora_target_modules ALL`。

# Experimental environment: 8*A100
# 8*80GB GPU memory
nproc_per_node=8
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
NPROC_PER_NODE=$nproc_per_node \
swift sft \
    --model_type deepseek-v2-chat \
    --sft_type lora \
    --tuner_backend peft \
    --dtype bf16 \
    --output_dir output \
    --ddp_backend nccl \
    --self_cognition_sample 2000 \
    --model_name 小白 'Xiao Bai' \
    --model_author 魔搭 'Modelscope' \
    --train_dataset_sample -1 \
    --num_train_epochs 1 \
    --max_length 512 \
    --check_dataset_strategy warning \
    --lora_rank 8 \
    --lora_alpha 32 \
    --lora_dropout_p 0.05 \
    --lora_dtype AUTO \
    --lora_target_modules DEFAULT \
    --gradient_checkpointing false \
    --batch_size 2 \
    --weight_decay 0.1 \
    --learning_rate 1e-4 \
    --gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
    --max_grad_norm 0.5 \
    --warmup_ratio 0.03 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 10 \
    --logging_steps 10 \
    --deepspeed default-zero3 \

微调后推理脚本: (这里的ckpt_dir需要修改为训练生成的checkpoint文件夹)

# Experimental environment: A10, 3090, V100
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
swift infer \
    --ckpt_dir output/deepseek-v2-chat/vx-xxx/checkpoint-xxx \
    --load_dataset_config true \
    --eval_human true \
    --max_length 512

微调的可视化结果:

训练准确率

image.png

训练loss

image.png

微调后样例:

<<< 你是谁
我是一个由魔搭开发的人工智能程序,被称为小白。我的主要目的是通过文本交流为人们提供帮助、信息和娱乐。如果你有任何疑问或需要帮助,请随时提出。

资源占用

微调

image.png

点击直达链接:DeepSeek-V2-Chat · 模型库 (modelscope.cn)

相关文章
|
6月前
|
自然语言处理 数据可视化 物联网
Qwen1.5-MoE开源,魔搭社区推理训练最佳实践教程来啦
通义千问团队推出Qwen系列的首个MoE模型,Qwen1.5-MoE-A2.7B。
|
11月前
|
数据可视化 PyTorch 算法框架/工具
零一万物Yi-34B-Chat 微调模型及量化版开源!魔搭社区最佳实践教程!
11月24日,零一万物基正式发布并开源微调模型 Yi-34B-Chat,可申请免费商用。同时,零一万物还为开发者提供了 4bit/8bit 量化版模型,Yi-34B-Chat 4bit 量化版模型可以直接在消费级显卡(如RTX3090)上使用。魔搭社区已支持下载、推理训练体验,并推出相关教程,欢迎大家来玩!
|
6月前
|
自然语言处理 物联网 Swift
零一万物开源Yi-VL多模态大模型,魔搭社区推理&微调最佳实践来啦!
近期,零一万物Yi系列模型家族发布了其多模态大模型系列,Yi Vision Language(Yi-VL)多模态语言大模型正式面向全球开源。
|
30天前
|
计算机视觉
Deepseek开源多模态LLM模型框架Janus,魔搭社区最佳实践
deepseek近期推出了简单、统一且灵活的多模态框架Janus,它能够统一处理多模态理解和生成任务。让我们一起来了解一下吧。
|
4月前
|
算法 API 数据中心
魔搭社区利用 NVIDIA TensorRT-LLM 加速开源大语言模型推理
魔搭社区于 2022 年 11 月初创建,首次在业界提出了 “模型即服务”( MaaS, Model as a Service)的理念。
|
5月前
|
人工智能 JSON 自然语言处理
智谱AI GLM4开源!支持多模态&长序列,魔搭推理、微调最佳实践来啦!
GLM-4-9B是智谱AI推出的新一代预训练模型GLM-4系列的开源版本,它在多个数据集上的测试中表现出高绩效,包括语义理解、数学问题解决、推理和代码理解等方面。GLM-4-9B模型有四个变体:基础版GLM-4-9B(8K)、对话版GLM-4-9B-Chat(128K)、超长上下文版GLM-4-9B-Chat-1M(1M)和多模态版GLM-4V-9B-Chat(8K)。用户可以通过魔搭社区提供的链接体验这些模型,包括在CPU上运行的版本和支持vLLM推理的版本。
智谱AI GLM4开源!支持多模态&长序列,魔搭推理、微调最佳实践来啦!
|
6月前
|
并行计算 算法 物联网
LLM 大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘诀进阶实战指南
LLM 大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘诀进阶实战指南
LLM 大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘诀进阶实战指南
|
4月前
|
数据可视化 物联网 Swift
谷歌开源Gemma2!魔搭社区推理、微调最佳实践教程
Google面向全球研究人员和开发者发布并开源 Gemma 2 大语言模型!本次Gemma 2 系列为轻量级开放模型,提供9B和27B参数两种尺寸,采用全新的架构设计,性能表现优异。
|
6月前
|
安全 测试技术 Swift
Llama 3开源,魔搭社区手把手带你推理,部署,微调和评估
Meta发布了 Meta Llama 3系列,是LLama系列开源大型语言模型的下一代。在接下来的几个月,Meta预计将推出新功能、更长的上下文窗口、额外的模型大小和增强的性能,并会分享 Llama 3 研究论文。
Llama 3开源,魔搭社区手把手带你推理,部署,微调和评估
|
6月前
|
人工智能 安全 测试技术
微软开源4.2B参数多模态SLM模型Phi-3-vision,魔搭社区推理、微调实战教程来啦!
在 Microsoft Build 2024 上,微软持续开源了 Phi-3 系列的新模型们。包括 Phi-3-vision,这是一种将语言和视觉功能结合在一起的多模态模型。

热门文章

最新文章