【Linux | C++ 】基于环形队列的多生产者多消费者模型(Linux系统下C++ 代码模拟实现)

简介: 【Linux | C++ 】基于环形队列的多生产者多消费者模型(Linux系统下C++ 代码模拟实现)

引言

在上一篇文章中,我们深入探讨了Linux操作系统中的POSIX信号量,这是一个强大的同步机制,用于协调进程或线程对共享资源的访问。通过对信号量的深入理解和应用,我们学习了如何有效地解决并发编程中的竞争条件,确保程序的稳定性和效率。随着并发编程技术的不断深入,理解和掌握更多同步模型对于开发高性能、可靠的软件系统变得尤为重要。因此,本篇文章将继续我们的并发编程之旅,引入一个经典且实用的同步模型——基于环形队列的生产者消费者模型。

在本文中,我们将详细探讨基于环形队列的生产者消费者模型的设计和实现。我们将介绍环形队列的数据结构,分析生产者和消费者之间的同步机制,探索如何利用前文提到的POSIX信号量以及其他同步工具(如互斥锁)来实现生产者和消费者之间高效、安全的数据交换。通过具体的代码示例和案例分析,读者将能够深入理解生产者消费者模型的工作原理,掌握如何在实际项目中设计和实现基于环形队列的高效同步模型。

探索基于环形队列的生产者消费者模型,不仅能够加深我们对并发编程同步机制的理解,还能够提升我们解决实际问题的能力。让我们一起继续并发编程的探索之旅,解锁更多的编程技巧和知识。

一、生产者消费者模型

生产者消费者模型是并发编程中一个经典且重要的问题模型,它描述了两类主体——生产者(Producer)和消费者(Consumer)在并发环境下对共享资源(通常是缓冲区或队列)的访问模式。生产者负责生成数据并将其放入缓冲区,而消费者则从缓冲区取出数据进行处理。该模型的核心在于解决生产者和消费者之间的同步与通信问题,保证数据在生产和消费时的一致性和可用性,同时避免资源的冲突和浪费。对于希望深入了解生产者消费者模型的读者,我们在之前的内容中有所介绍——链接:⭕生产者消费者模型

通过上述简介,希望读者能够对生产者消费者模型有一个初步的认识和理解。在并发编程的实践中,该模型不仅是一个常见的问题场景,也提供了一种思考并发问题的方法论,对于提高编程技能和系统设计能力都有重要意义。

二、环形队列简介

环形队列是一种固定大小的、使用数组实现的队列数据结构,特别在于其首尾相连的循环特性。这种结构允许当数组达到其容量上限时,新加入的元素可以放置在数组的开始位置(如果那里有空位)。环形队列的这一设计使得它在空间利用和操作效率上具有显著优势,尤其适用于有固定缓冲区需求的场景。

🚩主要特点包括:

  • 固定大小:一旦创建,队列的大小就固定不变。
  • 高效操作:入队和出队操作都非常高效,因为它们仅涉及指针的简单移动。
  • 两个指针:使用头指针和尾指针来分别追踪队列的第一个和最后一个元素。

环形队列广泛应用于操作系统、网络通信、生产者消费者模型等多个领域,特别是在需要高效管理固定缓冲区资源的场合。实现环形队列时,关键在于正确管理头尾指针的位置,并准确判断队列的空或满状态。

三、基于环形队列的生产者消费者模型(C++ 代码模拟实现)

⭕Makefile文件

ring_queue:testMain.cc
  g++ -o $@ $^ -std=c++11 -lpthread
.PHONY:clean
clean:
  rm -f ring_queue

这段代码是一个Makefile脚本,用于编译和清理一个名为ring_queue的项目。

⭕ . h 头文件

✅sem.hpp

// 防止头文件重复包含的预处理指令。
#ifndef _SEM_HPP_
#define _SEM_HPP_

// 引入输入输出流库,虽然在此代码中未直接使用,可能为后续扩展预留。
#include <iostream>
// 引入POSIX信号量的头文件。
#include <semaphore.h>

// 定义一个类 Sem。
class Sem
{
public:
    // 构造函数,接收一个整数value作为信号量的初始值。
    Sem(int value)
    {
        // 初始化信号量,其中&sem_是信号量对象的地址,
        // 0表示信号量是当前进程的局部信号量,
        // value是信号量的初始值。
        sem_init(&sem_, 0, value);
    }
    
    // p操作,也称为wait操作,用于减少信号量的值。
    // 如果信号量的值为0,则调用此方法的线程将阻塞,直到信号量的值大于0。
    void p()
    {
        sem_wait(&sem_);
    }
    
    // v操作,也称为signal操作,用于增加信号量的值。
    // 如果有其他线程因为等待此信号量而阻塞,则它们中的一个将被唤醒。
    void v()
    {
        sem_post(&sem_);
    }
    
    // 析构函数,用于销毁信号量。
    ~Sem()
    {
        sem_destroy(&sem_);
    }

private:
    // 私有成员变量,存储信号量对象的实例。
    sem_t sem_;
};

// 预处理指令的结束标志。
#endif

这个Sem类提供了简单的接口来进行信号量的基本操作:初始化(构造函数)、等待(p方法)、信号(v方法)和销毁(析构函数)。通过这个类,可以更方便地在C++项目中使用POSIX信号量进行同步操作

✅ringQueue.hpp

// 防止头文件重复包含的预处理指令。
#ifndef _Ring_QUEUE_HPP_
#define _Ring_QUEUE_HPP_

// 引入所需的头文件。
#include <iostream>
#include <vector>
#include <pthread.h>
#include "sem.hpp"

// 定义一个全局常量作为队列的默认大小。
const int g_default_num = 5;

// 定义一个模板类RingQueue,用于实现环形队列。
template<class T>
class RingQueue
{
public:
    // 构造函数,参数default_num指定队列的大小,默认为g_default_num。
    RingQueue(int default_num = g_default_num)
    : ring_queue_(default_num), 
      num_(default_num),
      c_step(0),
      p_step(0),
      space_sem_(default_num), // 初始化空间信号量,表示可用空间数量。
      data_sem_(0) // 初始化数据信号量,表示队列中的数据项数量。
    {
        pthread_mutex_init(&clock, nullptr); // 初始化消费者互斥锁。
        pthread_mutex_init(&plock, nullptr); // 初始化生产者互斥锁。
    }
    
    // 析构函数,销毁互斥锁。
    ~RingQueue()
    {
        pthread_mutex_destroy(&clock);
        pthread_mutex_destroy(&plock);
    }
    
    // push方法,生产者调用,向队列中添加元素。
    void push(const T &in)
    {
        space_sem_.p(); // 等待有空间可写。
        pthread_mutex_lock(&plock); // 获取生产者互斥锁。
        ring_queue_[p_step++] = in; // 将元素添加到队列中。
        p_step %= num_; // 环形逻辑,如果到达末尾则回到开始。
        pthread_mutex_unlock(&plock); // 释放生产者互斥锁。
        data_sem_.v(); // 增加数据信号量,表示有新数据可读。
    }
    
    // pop方法,消费者调用,从队列中取出元素。
    void pop(T *out)
    {
        data_sem_.p(); // 等待有数据可读。
        pthread_mutex_lock(&clock); // 获取消费者互斥锁。
        *out = ring_queue_[c_step++]; // 从队列中取出元素。
        c_step %= num_; // 环形逻辑,如果到达末尾则回到开始。
        pthread_mutex_unlock(&clock); // 释放消费者互斥锁。
        space_sem_.v(); // 增加空间信号量,表示有空间可写。
    }

private:
    std::vector<T> ring_queue_; // 使用vector存储队列元素。
    int num_; // 队列的大小。
    
    int c_step; // 消费者在队列中的当前位置。
    int p_step; // 生产者在队列中的当前位置。
    
    Sem space_sem_; // 控制队列空间的信号量。
    Sem data_sem_; // 控制队列中数据的信号量。
    pthread_mutex_t clock; // 消费者互斥锁。
    pthread_mutex_t plock; // 生产者互斥锁。
};

#endif   // 预处理指令的结束标志。

这个环形队列的实现利用信号量space_sem_和data_sem_来控制队列的空间和数据,确保生产者不会在队列满时添加元素,消费者不会在队列空时尝试取出元素。同时,通过两个互斥锁clock和plock分别保护消费者和生产者的操作,防止并发环境下的数据竞争问题。这样的设计使得RingQueue既能高效地管理数据,又能保证线程安全。

⭕ . cpp 文件

✅testMain.cpp

// 包含RingQueue类的头文件。
#include "ringQueue.hpp"
#include <cstdlib> // 包含标准库,用于rand()等函数。
#include <ctime>   // 用于time()函数。
#include <sys/types.h> // 包含类型定义,例如pid_t。
#include <unistd.h>    // 包含各种常量和类型,并声明了各种函数,例如sleep()和getpid()。

// 消费者线程的工作函数。
void *consumer(void *args)
{
    RingQueue<int> *rq = (RingQueue<int> *)args; // 将传入的参数转换为RingQueue指针。
    while(true)
    {
        sleep(1); // 休眠1秒,模拟处理时间。
        int x;
        rq->pop(&x); // 从环形队列中取出一个元素。
        // 打印消费信息,包括消费的值和当前线程ID。
        std::cout << "消费: " << x << " [" << pthread_self() << "]" << std::endl;
    }
}

// 生产者线程的工作函数。
void *productor(void *args)
{
    RingQueue<int> *rq = (RingQueue<int> *)args; // 将传入的参数转换为RingQueue指针。
    while(true)
    {
        int x = rand() % 100 + 1; // 生成一个1到100之间的随机数。
        // 打印生产信息,包括生产的值和当前线程ID。
        std::cout << "生产: " << x << " [" << pthread_self() << "]" << std::endl;
        rq->push(x); // 将生成的随机数放入环形队列中。
    }
}

int main()
{
    srand((uint64_t)time(nullptr) ^ getpid()); // 设置随机数种子,确保每次运行结果不同。
    RingQueue<int> *rq = new RingQueue<int>(); // 创建一个RingQueue对象。
    pthread_t c[3], p[2]; // 定义线程ID数组,3个消费者和2个生产者。

    // 创建消费者线程。
    pthread_create(&c[0], nullptr, consumer, (void*)rq);
    pthread_create(&c[1], nullptr, consumer, (void*)rq);
    pthread_create(&c[2], nullptr, consumer, (void*)rq);

    // 创建生产者线程。
    pthread_create(&p[0], nullptr, productor, (void*)rq);
    pthread_create(&p[1], nullptr, productor, (void*)rq);

    // 等待所有线程完成。
    for(int i = 0; i < 3; i++) pthread_join(c[i], nullptr);
    for(int i = 0; i < 2; i++) pthread_join(p[i], nullptr);

    return 0; // 程序结束。
}


首先通过srand()设置随机数种子,以确保每次程序运行时生成的随机数序列不同。然后,它创建了一个RingQueue<int>对象,用于存储生产者线程生成的整数。

接着,代码创建了3个消费者线程和2个生产者线程。每个线程都被分配了一个工作函数:生产者调用productor函数,而消费者调用consumer函数。这些线程通过pthread_create函数创建,并将RingQueue对象作为参数传递给它们的工作函数。

最后,main函数使用pthread_join等待所有线程完成,以确保程序在所有线程都执行完毕后才退出。

温馨提示

感谢您对博主文章的关注与支持!如果您喜欢这篇文章,可以点赞、评论和分享给您的同学,这将对我提供巨大的鼓励和支持。另外,我计划在未来的更新中持续探讨与本文相关的内容。我会为您带来更多关于Linux以及C++编程技术问题的深入解析、应用案例和趣味玩法等。如果感兴趣的话可以关注博主的更新,不要错过任何精彩内容!

再次感谢您的支持和关注。我们期待与您建立更紧密的互动,共同探索Linux、C++、算法和编程的奥秘。祝您生活愉快,排便顺畅!

目录
相关文章
|
5天前
|
存储 缓存 监控
Linux缓存管理:如何安全地清理系统缓存
在Linux系统中,内存管理至关重要。本文详细介绍了如何安全地清理系统缓存,特别是通过使用`/proc/sys/vm/drop_caches`接口。内容包括清理缓存的原因、步骤、注意事项和最佳实践,帮助你在必要时优化系统性能。
112 78
|
8天前
|
Linux Shell 网络安全
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
本指南介绍如何利用 HTA 文件和 Metasploit 框架进行渗透测试。通过创建反向 shell、生成 HTA 文件、设置 HTTP 服务器和发送文件,最终实现对目标系统的控制。适用于教育目的,需合法授权。
39 9
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
|
4天前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
44 13
|
28天前
|
Ubuntu Linux 网络安全
linux系统ubuntu中在命令行中打开图形界面的文件夹
在Ubuntu系统中,通过命令行打开图形界面的文件夹是一个高效且实用的操作。无论是使用Nautilus、Dolphin还是Thunar,都可以根据具体桌面环境选择合适的文件管理器。通过上述命令和方法,可以简化日常工作,提高效率。同时,解决权限问题和图形界面问题也能确保操作的顺利进行。掌握这些技巧,可以使Linux操作更加便捷和灵活。
20 3
|
5天前
|
Ubuntu Linux C++
Win10系统上直接使用linux子系统教程(仅需五步!超简单,快速上手)
本文介绍了如何在Windows 10上安装并使用Linux子系统。首先,通过应用商店安装Windows Terminal和Linux系统(如Ubuntu)。接着,在控制面板中启用“适用于Linux的Windows子系统”并重启电脑。最后,在Windows Terminal中选择安装的Linux系统即可开始使用。文中还提供了注意事项和进一步配置的链接。
17 0
|
1月前
|
Linux
在 Linux 系统中,`find` 命令
在 Linux 系统中,`find` 命令
33 1
|
16天前
|
存储 Oracle 安全
服务器数据恢复—LINUX系统删除/格式化的数据恢复流程
Linux操作系统是世界上流行的操作系统之一,被广泛用于服务器、个人电脑、移动设备和嵌入式系统。Linux系统下数据被误删除或者误格式化的问题非常普遍。下面北亚企安数据恢复工程师简单聊一下基于linux的文件系统(EXT2/EXT3/EXT4/Reiserfs/Xfs) 下删除或者格式化的数据恢复流程和可行性。
|
25天前
|
存储 编译器 C语言
【c++丨STL】string类的使用
本文介绍了C++中`string`类的基本概念及其主要接口。`string`类在C++标准库中扮演着重要角色,它提供了比C语言中字符串处理函数更丰富、安全和便捷的功能。文章详细讲解了`string`类的构造函数、赋值运算符、容量管理接口、元素访问及遍历方法、字符串修改操作、字符串运算接口、常量成员和非成员函数等内容。通过实例演示了如何使用这些接口进行字符串的创建、修改、查找和比较等操作,帮助读者更好地理解和掌握`string`类的应用。
38 2
|
1月前
|
存储 编译器 C++
【c++】类和对象(下)(取地址运算符重载、深究构造函数、类型转换、static修饰成员、友元、内部类、匿名对象)
本文介绍了C++中类和对象的高级特性,包括取地址运算符重载、构造函数的初始化列表、类型转换、static修饰成员、友元、内部类及匿名对象等内容。文章详细解释了每个概念的使用方法和注意事项,帮助读者深入了解C++面向对象编程的核心机制。
83 5
|
1月前
|
存储 编译器 C++
【c++】类和对象(中)(构造函数、析构函数、拷贝构造、赋值重载)
本文深入探讨了C++类的默认成员函数,包括构造函数、析构函数、拷贝构造函数和赋值重载。构造函数用于对象的初始化,析构函数用于对象销毁时的资源清理,拷贝构造函数用于对象的拷贝,赋值重载用于已存在对象的赋值。文章详细介绍了每个函数的特点、使用方法及注意事项,并提供了代码示例。这些默认成员函数确保了资源的正确管理和对象状态的维护。
80 4