本文涉及知识点
图论 并集查找 最大公约数 调和数
LeetCode952. 按公因数计算最大组件大小
给定一个由不同正整数的组成的非空数组 nums ,考虑下面的图:
有 nums.length 个节点,按从 nums[0] 到 nums[nums.length - 1] 标记;
只有当 nums[i] 和 nums[j] 共用一个大于 1 的公因数时,nums[i] 和 nums[j]之间才有一条边。
返回 图中最大连通组件的大小 。
示例 1:
输入:nums = [4,6,15,35]
输出:4
示例 2:
输入:nums = [20,50,9,63]
输出:2
示例 3:
输入:nums = [2,3,6,7,4,12,21,39]
输出:8
提示:
1 <= nums.length <= 2 * 104
1 <= nums[i] <= 105
nums 中所有值都 不同
调和数
m = max(nums[i])。
vIndex记录各数的下标:-1,非法。相同的值如果有多个,只记录第一个。重复出现的数和第一个元素连接。
枚举x$\in[1,max(nums[i])] v[x] 记录x的倍数下标。
v[x]的数据分别和v[x][0]连接。
枚举1的倍数,需要运算m次。
枚举2的倍数,需要运算m/2。
枚举3的倍数,需要运算m/3。
⋯ \cdots⋯
总次数为:m(1+1/2+1/3 +⋯ \cdots⋯ +1/m) ,括号内是调和数,≈ \approx≈ logm。
故总时间复杂度为:O(mlogm)。
v[x] 就是可以只记录一个元素,后面的元素直接和它连接。
代码
核心代码
class CUnionFind { public: CUnionFind(int iSize) :m_vNodeToRegion(iSize) { for (int i = 0; i < iSize; i++) { m_vNodeToRegion[i] = i; } m_iConnetRegionCount = iSize; } CUnionFind(vector<vector<int>>& vNeiBo):CUnionFind(vNeiBo.size()) { for (int i = 0; i < vNeiBo.size(); i++) { for (const auto& n : vNeiBo[i]) { Union(i, n); } } } int GetConnectRegionIndex(int iNode) { int& iConnectNO = m_vNodeToRegion[iNode]; if (iNode == iConnectNO) { return iNode; } return iConnectNO = GetConnectRegionIndex(iConnectNO); } void Union(int iNode1, int iNode2) { const int iConnectNO1 = GetConnectRegionIndex(iNode1); const int iConnectNO2 = GetConnectRegionIndex(iNode2); if (iConnectNO1 == iConnectNO2) { return; } m_iConnetRegionCount--; if (iConnectNO1 > iConnectNO2) { UnionConnect(iConnectNO1, iConnectNO2); } else { UnionConnect(iConnectNO2, iConnectNO1); } } bool IsConnect(int iNode1, int iNode2) { return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2); } int GetConnetRegionCount()const { return m_iConnetRegionCount; } vector<int> GetNodeCountOfRegion()//各联通区域的节点数量 { const int iNodeSize = m_vNodeToRegion.size(); vector<int> vRet(iNodeSize); for (int i = 0; i < iNodeSize; i++) { vRet[GetConnectRegionIndex(i)]++; } return vRet; } std::unordered_map<int, vector<int>> GetNodeOfRegion() { std::unordered_map<int, vector<int>> ret; const int iNodeSize = m_vNodeToRegion.size(); for (int i = 0; i < iNodeSize; i++) { ret[GetConnectRegionIndex(i)].emplace_back(i); } return ret; } private: void UnionConnect(int iFrom, int iTo) { m_vNodeToRegion[iFrom] = iTo; } vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引 int m_iConnetRegionCount; }; class Solution { public: int largestComponentSize(vector<int>& nums) { m_c = nums.size(); const int iMax = *std::max_element(nums.begin(), nums.end()); CUnionFind uf(m_c); vector<int> vIndex(iMax + 1, -1); for (int i = 0; i < m_c; i++) { if (-1 == vIndex[nums[i]]) { vIndex[nums[i]] = i; } else { uf.Union(i, vIndex[nums[i]]); } } for (int x = 2; x <= iMax; x++) { int pre = -1; for (int cur = x; cur <= iMax; cur += x) { if (-1 == vIndex[cur]) { continue; } if (-1 == pre) { pre = vIndex[cur]; } else { uf.Union(pre, vIndex[cur]); } } } auto m = uf.GetNodeOfRegion(); int iRet = 0; for (const auto& [tmp, v] : m) { iRet = max(iRet, (int)v.size()); } return iRet; } int m_c; };
测试用例
template<class T> void Assert(const T& t1, const T& t2) { assert(t1 == t2); } template<class T> void Assert(const vector<T>& v1, const vector<T>& v2) { if (v1.size() != v2.size()) { assert(false); return; } for (int i = 0; i < v1.size(); i++) { Assert(v1[i], v2[i]); } } int main() { vector<int> nums; { Solution sln; nums = { 20,50,9,63 }; auto res = sln.largestComponentSize(nums); Assert(2, res); } { Solution sln; nums = { 4, 6, 15, 35 }; auto res = sln.largestComponentSize(nums); Assert(4, res); } { Solution sln; nums = { 2,3,6,7,4,12,21,39 }; auto res = sln.largestComponentSize(nums); Assert(8, res); } }
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。