R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码

简介: R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码

贝叶斯回归是一种统计方法,它使用贝叶斯定理来估计回归模型的参数。与传统的频率派回归方法不同,贝叶斯回归提供了参数的后验分布,而不仅仅是点估计。这意味着我们可以得到参数的不确定性度量,而不仅仅是单一的估计值点击文末“阅读原文”获取完整代码数据

相关视频

image.png

image.png

R语言用于拟合贝叶斯广义线性模型。我们可以方便地帮助客户拟合贝叶斯线性回归、逻辑回归、多项式回归等各种模型。

Stan

你可以运行大多数回归。

  • 由于广义线性模型(GLMs)涵盖了线性回归、probit、logit、Poisson、二项式、指数等模型,

glm

Family(可能还需要一个link参数)定义了你想要的回归类型:

  • 线性回归:family = gaussian
  • Logit:family = binomial(link = "logit")
  • Probit:family = binomial(link = "probit")
  • Poisson:family = poisson

先验分布:

  • 无信息先验可以通过使用prior = NULL来设置
  • 弱信息先验可以通过使用prior =与以下之一来指定:
  • normal, student_t, cauchy, laplace以及更多,可以在这里找到

使用rstanarm的泰坦尼克号生存示例

c7b2453481bf48e45d7d3cc10190d038.png



  # 重构Class列  

  Titanic$class <- str_extract(Titanic$PClass, "[0-9]")  


  # 显示模型摘要  

  summary(TitanicLinear)

在实践中,对于二元目标变量,通常会选择逻辑回归(例如,使用family = binomial(link = "logit"))。模型的摘要会提供有关模型拟合的详细信息,包括每个预测变量的系数和它们的置信区间。

ec74f25c26c260c143e8fb21e86a5c08.png


可信区间

打印置信区间。


8495a7d7543cc1524670538d62f17bb9.png

图形化可信区间

18743ebc18a78d04063c9f6fbd89da94.png


绘制后验分布

在R中,你还可以轻松地绘制参数的后验分布。后验分布反映了在给定数据后,你对模型参数的信念。你可以使用各种可视化技术来展示这些分布,如直方图、密度图或箱线图。

ggplot(Titanic_poste
ss)) + 
  geom_histogram()

40e086fec9a1a4f71210029dafa9bce0.png

先验和后验的比较

150067323be05c9a18e2acb5e0674fa9.png

模型检验

模型检验基础

执行贝叶斯回归后,有多种回归诊断方法可以帮助推断模型是否收敛、表现如何,甚至比较不同模型。

图形化后验预测分析

要检查后验分布的预测准确性,它会将后验分布模拟的y值与实际的y值进行比较并绘制图形。


acf80058351af96e40530614282e0614.png

正则化与预测准确性

在贝叶斯和频率派估计中,一个关键问题是如何平衡预测准确性与简约性。换句话说,研究人员应该关注如何在不过度拟合数据的同时创建具有说服力的模型。

WAIC 示例

76a00d8eabc1b5897676816e0eb93654.png

留一交叉验证

除了WAIC之外,另一种比较样本外预测能力的方法是应用留一交叉验证(LOO)。

  • LOO通过迭代地将数据划分为训练集和预测集来评估后验模拟的预测能力。

LOO 示例

fd7a00636655234ec05de788d0f05cee.png

模型比较

复制代码
  Titanic_probit <- 
        
      data = Titanic, family = binomial(link=probit))  
  Loo_probit <- loo(Titanic_probit)  
    
      data = Titanic, family = binomial(link=logit))  
  Loo_logit <- loo(Titanic_logit)  
    
  # ELPD_diff>0 表示第二个模型更受支持

在上面的代码中,我们拟合两个贝叶斯广义线性模型,分别使用了probit和logit链接函数。

41e38e2be08203f6fca4564ac07a314b.png

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
19天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
67 3