Python众筹项目结果预测:优化后的随机森林分类器可视化|数据代码分享

简介: Python众筹项目结果预测:优化后的随机森林分类器可视化|数据代码分享


随着信息技术的飞速发展,众筹作为一个互联网金融的子领域已经成为个人和小企业主筹集资金支持梦想的创新渠道点击文末“阅读原文”获取完整代码数据

相关视频

image.png

无论对于众筹发起者还是众筹平台而言,如何利用历史数据去准确预测一个众筹项目的成功与否乃至最终筹款额度都是非常值得探讨研究的问题。

解决方案

任务/目标

根据历史数据,帮助客户分析众筹项目成功规律,预测每个项目的筹款额度。

数据源准备

从Kickstarter平台上爬取了众筹项目数据查看文末了解数据免费获取方式,其中包含了众筹项目名称、链接、描述、支持者数量和许多其他特征。随后进行了数据清洗。主要处理了各种爬虫过程中产生的缺失值。

7e10b0548698f45e10c846faf5fc9c78.png

print(df_2018.shape)
print(df_2016.shape)

e1d2089cbee6406bb03c2d119dbb7936.png

特征转换

项目名称字段二分为离散型变量(已知/未知);项目描述抽象成项目描述字数。额外加入可计算属性平均每参与者贡献额。

df.country = df.country.'N,0"', value='NO')
ummies(df.drop(labels=['name', 'launched', 'deadlin
df_encoded['avbacking'] = (df_encoded['usd_pledgal']/(df_encoded['backers']+1))

构造

划分训练集和测试集

考虑到筹款项目与时间关系不大,使用最普遍的不放回抽样方法划分训练集与测试集,比例为4:1。

数据分析

我想从了解Kickstarter项目的基础数据开始,这包括项目发起地、主要类别、持续时间、目标等内容。

percent_plot((df.countcounts()/df.s


cab170d751912916ac7370ce8ebc0c8f.png

0e8a8842d5cf5945305d9aac1f5b62a9.png

4ab26c581b65c2cf455483ed35ef48bd.png

4ab26c581b65c2cf455483ed35ef48bd.png


bf6afaa19700deff64e09d962be7f27a.png


描述性统计

从描述性统计中我们能学到什么?成功与什么有关?我们必须记住,相关性并不等于因果关系。

050331bbf21af04402d090f8ceb86472.png


机器学习分类模型

我们来看看是否能够准确地预测哪些项目会成功,哪些项目不会成功。我们将使用随机森林分类器,因为这种集成学习方法通常相当强大,并且不是基于距离的(所以我们不需要进一步标准化特征,如项目持续时间、实际筹集资金或实际目标金额)。

R_moel(42, X_train, X_test, y_train, y_test)


c4a691bad11f9dbefeab70ae9d349315.png

e080f48aabc0a63c22e4d3a2352ad565.png

print_iprtant_fe='columns'))
usd_gol_real
duration
main_category_Music

结论

根据随机森林集成学习器的特征重要性,最重要的特征包括实际目标金额(usd_goal_real)、项目持续时间(duration)、主要类别中的漫画(main_category_Comics)、时尚(main_category_Fashion)、音乐(main_category_Music)和戏剧(main_category_Theater)。这表明我们设定的货币目标以及我们允许人们为项目筹款的时间长度确实非常重要。艺术和表演类别的项目更有可能成功,这一结论得到了描述性统计分析的佐证。

许多因素都对此有贡献,而这些因素无法完全通过数据来解释。例如,商业理念、规划、激励人们进行筹款的措施或项目设计都很难量化。也许如果我们拥有每个项目评论中的情感数据,我们就可以将其整合到一个更大、更好的分类模型中,以预测我们的成功几率。

相关文章
|
12天前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
225 1
|
13天前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
203 0
|
14天前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
22天前
|
数据采集 关系型数据库 MySQL
python爬取数据存入数据库
Python爬虫结合Scrapy与SQLAlchemy,实现高效数据采集并存入MySQL/PostgreSQL/SQLite。通过ORM映射、连接池优化与批量提交,支持百万级数据高速写入,具备良好的可扩展性与稳定性。
|
安全 Java Python
sonarqube扫描Python项目代码
sonarqube扫描Python项目代码
sonarqube扫描Python项目代码
|
存储 JSON NoSQL
Python | Python学习之常用项目代码(一)
Python | Python学习之常用项目代码(一)
125 0
|
算法 程序员 开发工具
GitHub上新!14个Python项目详细教程(附完整代码)
Python作为程序员的宠儿,越来越得到人们的关注,使用Python进行应用程序开发的也越来越多。 今天给小伙伴们分享的这份项目教程完整代码已上传至GitHub,你可以选择跟着这份教程一段一段的手敲出来这几个项目,也可以直接从GitHub上copy下来。
|
算法 程序员 开发工具
GitHub上新!14个Python项目详细教程(附完整代码)
Python作为程序员的宠儿,越来越得到人们的关注,使用Python进行应用程序开发的也越来越多。 今天给小伙伴们分享的这份项目教程完整代码已上传至GitHub,你可以选择跟着这份教程一段一段的手敲出来这几个项目,也可以直接从GitHub上copy下来。
|
存储 Linux 开发工具
Python基础实战项目——学生信息管理系统(内涵完整项目代码)
Python基础实战项目——学生信息管理系统(内涵完整项目代码)
785 1
|
存储 机器学习/深度学习 供应链
Python漏洞允许在35万个项目中执行代码
Python漏洞允许在35万个项目中执行代码

推荐镜像

更多