R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例2

简介: R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例

R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例1:https://developer.aliyun.com/article/1501159

389cf91a5ec2b0924c0d4018d515c9af.png

从结果中我们可以看到将数据划分成不同类别后得到的组间距离。然后我们将数据划分成6个类别,然后查看数据的聚类情况。

最后,我们根据确定的聚类数量对数据进行了重新划分,并在二维网格上展示了聚类结果。通过为每个群集分配不同的颜色,我们得到了直观的聚类地图(image.png图片链接)。这些地图不仅展示了不同类别客户在信用人口属性上的分布情况,还为我们提供了深入理解客户群体的有力工具。

f06ec87f0817a79b2f1dd82a415f2259.png

b521741fc4a60d4d7fbb9ba1e94d18d4.png


主成分分析 PCA算法

主成分分析是一种常用于数据降维和特征提取的统计方法。通过PCA,我们可以将原始的高维数据转换为一组低维的正交变量(即主成分),这些变量能够最大限度地保留原始数据中的变异信息。

ata , center = TRUE, scale. = TRUE)  
  
PLPW.pca$rotation[,1:4]

b4b4599484c7e8edc4347558ce984809.png

执行完上述代码后,您可以得到每个变量在前四个主成分上的载荷值,从而了解哪些变量对主成分的影响最大。

cf70cd62fca58996a84b31879327fa71.png

从结果中我们可以看到方差的变化情况。从图中我们可以看到,从第四个主成分开始方差解释率没有明显的变化,因此我们可以看前三个主成分的载核情况,从而发现有趣的变量

目前三个主成分的载荷情况中,我们可以看到下面这些变量在前三个主成分中均有较大的载荷,因此可以认为这些变量是比较重要的。

b591fc87543cfaf2088d3ff2369a2268.png


多层感知机(MLP)

为了部署一个用于预测尚未评估客户信用价值的预测模型,我们采用了一种基于循环迭代的策略来优化模型参数。该策略的核心思想是通过不断调整参数,建模数据,并记录每次参数变化对应的准确度,从而绘制出准确度曲线,以便筛选出最优的准确度所对应的参数。

首先,我们对训练集进行归一化处理,以确保不同特征之间的尺度一致,从而提高模型的训练效率。归一化后的训练集被用于构建多层感知机模型。

trainset <- normT

接下来,我们训练多层感知机模型。在这个例子中,我们设置了隐藏层大小为5,学习率为0.01,最大迭代次数为250。同时,为了监控模型的性能,我们还提供了测试集作为输入。

utsTrain, trainset$targetsTrain, size=5, learnFuncParams=c(0.01), maxit=250, inputsTest=trains

974104a752b7c3c44ec6d27db9e1cabe.png 训练完成后,我们进行预测,并计算预测结果。

为了评估模型的性能,我们计算了训练集和测试集上的混淆矩阵。混淆矩阵提供了模型在各个类别上的预测准确率、召回率等关键指标。

混淆矩阵的可视化展示了模型在训练集和测试集上的预测性能。从图中可以直观地看出模型在各个类别上的预测准确性。

confusionMatrix(tra.6))

47de0d1f3e8155c8ca83d9b5b664ac46.png

我们采用迭代方法寻找最优参数,通过对不同参数组合进行建模,得到了以下的准确度曲线图:

9fde7aa13a294059e718de4931f1241a.png

从准确度曲线图中可以清晰地观察到,当参数设置为5时,模型的准确度达到了最高值75%。这表明在该参数设置下,模型能够更好地学习和预测数据中的模式。

基于这一发现,我们设定了最优参数,并重新构建了模型。通过对比备用参数的结果,我们发现模型的准确度有了显著的提升。在训练集上,准确度从26%提高到了71.66%,而在测试集上,准确度也从27%提升到了54.74%。这一显著的改进证明了使用最优参数对于提高模型性能的重要性。

我们还通过计算混淆矩阵的对角线元素之和与矩阵所有元素之和的比值来进一步验证模型的准确度。在训练集上,该比值为0.7166157,而在测试集上为0.5474006,这进一步支持了我们的结论,即最优参数使得模型的准确度得到了大幅度的提高。

> sum(diag( tab1))/sum(tab1)

9ce49d68c81438053ede8d8afb549f73.png

506299dcb6b7d81d3e528f98b6677781.png

此外,我们还绘制了ROC曲线来评估模型的分类性能。ROC曲线上的每个点对应一个阈值,反映了在不同阈值下模型的真阳性率(TPR)和假阳性率(FPR)。

plotROC(predictTestSet[,2], trainset$targetsTest[,2])

d57724804046940303478d8ab9316f7e.png

从ROC曲线图中可以看出,模型的预测效果位于左上方,这意味着模型在保持较低的假阳性率的同时,能够捕获到大部分的真实阳性样本。这进一步证明了模型具有较好的分类性能。

综上所述,通过迭代寻找最优参数并重新构建模型,我们成功地提高了模型的准确度,并通过ROC曲线验证了模型的分类性能。这些结果为我们深入理解客户群体和优化信用评估流程提供了有力的支持。

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
3月前
|
存储 数据采集 数据处理
R语言数据变换:使用tidyr包进行高效数据整形的探索
【8月更文挑战第29天】`tidyr`包为R语言的数据整形提供了强大的工具。通过`pivot_longer()`、`pivot_wider()`、`separate()`和`unite()`等函数,我们可以轻松地将数据从一种格式转换为另一种格式,以满足不同的分析需求。掌握这些函数的使用,将大大提高我们处理和分析数据的效率。
|
1月前
|
机器学习/深度学习
深度学习笔记(一): 神经网络之感知机详解
深度学习笔记(一):探索感知机模型及其在神经网络中的应用。
33 0
深度学习笔记(一): 神经网络之感知机详解
|
2月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
数据处理
R语言数据合并:掌握`merge`与`dplyr`中`join`的巧妙技巧
【8月更文挑战第29天】如果你已经在使用`dplyr`进行数据处理,那么推荐使用`dplyr::join`进行数据合并,因为它与`dplyr`的其他函数(如`filter()`、`select()`、`mutate()`等)无缝集成,能够提供更加流畅和一致的数据处理体验。如果你的代码中尚未使用`dplyr`,但想要尝试,那么`dplyr::join`将是一个很好的起点。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
69 3
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
深入神经网络:从感知机到深度学习
【7月更文第17天】当我们谈论人工智能时,神经网络常常是那个闪亮的明星。从最初的简单模型——感知机,到当今复杂而强大的深度学习系统,这场技术革命正以前所未有的方式改变着我们的世界。今天,咱们就用通俗易懂的语言,搭配一些简单的代码示例,来一场《深入神经网络:从感知机到深度学习》的探索之旅。
63 8

热门文章

最新文章