R语言平稳性ADF检验、ARCH-LM效应检验分析收盘价收益率数据可视化

简介: R语言平稳性ADF检验、ARCH-LM效应检验分析收盘价收益率数据可视化

数据读取和处理是金融分析中非常重要的一步。为了减少误差,在估计时我们可以对每个交易日的收盘价进行自然对数处理,即对日收益率进行计算点击文末“阅读原文”获取完整代码数据

相关视频

image.png

image.png

本文通过R软件对金融数据帮助客户进行读取和处理,并进行了收益率波动图、收益率序列的平稳性检验、自相关图和偏自相关图以及ARCH效应检验等分析。通过这些分析,我们可以更好地理解和预测金融市场的变化。

数据读取和处理

为减少误差,估计时根据每个交易日的收盘价对日收益率进行自然对数处理,即收益率r=log(/)。

##读取数据  
  
golddata=read.csv("数据.csv")  
head(golddata)

d44646a4820f78d19ad7f394abbfec05.png

Valuedata=ts(Valuedata,start = c(2008,2),frequency=365)

为减少误差,在估计时,根据每个交易日的收盘价对日收益率进行自然对数处理,即将收益率根据以下公式进行计算:

绘制收益率波动图

log(lag(Valuedata)) - log(Valuedata)


a0c0e0b3d38889faf89fa8bfb51e2adb.png

datadesc(Valuedata1)

8e8a6e38afec856f629dbecb185ff0dc.png

6e263c04bbe20df52259a54c492793b5.png

通过R软件得到 指数日收益率直方图

日收益率偏度为3.309377,其分布是右偏的,其峰度为 3.309377,远高于正态分布的峰度值3。可知,收益率不服从正态分布,即利用所用基于正态分布统计方法对收益率序的检验均失效。

收益率序列的平稳性检验(ADF检验)

平稳性检验最常用的方法为单位根方法,运用R软件,对日收益率进行单位根检验,检验结果如下

1819d1576aadbbb4cfe9ebc3e0f7e0e7.png

从单位根检验结果可看出:单位根检验的p-value小于相应临界值0.05,从而拒绝原假设,表明 收益率 不存在单位根,是平稳序列,即服从I(0)过程

通过R软件画出 日收益率的自相关图和收益率的偏自相关图

73e9a21fe9c665c05cdf7219cfd60bb3.png

eabbb95f3c48123ef13464a111e6495d.png

从自相关图和偏自相关图的结果来看,对数收益率的自相关函数值和偏自相关函数值很快落入置信区间,因此对数收益率稳定。

ARCH效应检验

1.滞后阶数的选择及均值方程的确定

residuals<-ols$residuals

681a352f35b0be55e189eeeb0d9ada45.png

681a352f35b0be55e189eeeb0d9ada45.png f37244bcc3750682e0647dc62576c8c8.png 根据Chi-squared最小原则可以看出滞后1期为最优,故选择滞后阶数为1。

残差序列自相关检验(日收益率的残差和残差平方自相关图)

19a30ffdb69000d8153351682d5a08fd.png

10497e3f54f1eb2f4a20fd42bd9a7460.png


从序列残差图中可以看出,相关系数基本落入蓝色虚线(95%置信区间)内, 即表明:日收益率残差不存在显著的自相关。而从残差平方图中可看出,相关系数都没落入蓝色虚线(95%置信区间)内,即表明:日收益率的残差平方有显著的自相关,显示出ARCH效应。

对残差平方做线性图


e54a429e6761ef4c474a6ecfbf6d3c03.png


a8f4191f777654540d5d0896d2053066.png


相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
19天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
67 3
|
6月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)