数据分享|Python用偏最小二乘回归Partial Least Squares,PLS分析桃子近红外光谱数据可视化

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,182元/月
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
MSE Nacos/ZooKeeper 企业版试用,1600元额度,限量50份
简介: 数据分享|Python用偏最小二乘回归Partial Least Squares,PLS分析桃子近红外光谱数据可视化

PLS,即偏最小二乘(Partial Least Squares),是一种广泛使用的回归技术,用于帮助客户分析近红外光谱数据点击文末“阅读原文”获取完整代码数据

相关视频

image.png

如果您对近红外光谱学有所了解,您肯定知道近红外光谱是一种次级方法,需要将近红外数据校准到所要测量的参数的主要参考数据上。这个校准只需在第一次进行。一旦校准完成且稳健,就可以继续使用近红外数据预测感兴趣参数的值。

PCR只是使用通过PCA得到的若干主成分构建的回归模型。显然,这并不是最佳选择,而PLS就是解决这个问题的方法。

在本文中,我将向您展示如何使用Python构建一个简单的PLS回归模型。以下是我们将要做的概述。

  1. 展示PLS的基本代码
  2. 讨论我们要分析的数据及所需的预处理。我们将使用新鲜桃子水果的近红外光谱查看文末了解数据免费获取方式,其关联的Brix值与PCR相同。这是我们要校准的量。
  3. 我们将使用交叉验证方法构建我们的模型

PLS Python代码

好的,以下是基于Python 3.5.2的运行PLS交叉验证的基本代码。

# 导入需要的库
from sklearn.metrics import mean_squared_error, r2_score # 导入均方误差和R2得分指标
from sklearn.model_selection import cross_val_predict # 导入交叉验证函数
 
# 定义PLS对象
pls = PLSReg......
nts=5) # 定义保留5个成分的PLS回归模型
 
# 拟合数据
pls.f......
 Y) # 将数据拟合到PLS模型中
 
# 交叉验证
y_cv = cros......
y, cv=10) # 用10折交叉验证计算模型性能
 
# 计算得分
score = r2_score(y,v) # 计算R2得分
mse = mean_squa......
_cv) # 计算均方误差

为了检查我们的校准效果如何,我们使用通常的指标来衡量。我们通过将交叉验证结果y_cv与已知响应进行比较来评估这些指标。为了优化我们的PLS回归参数(例如预处理步骤和成分数量),我们将跟踪这些指标,最常见的是均方差(MSE)。

还有一件事。在实际代码中,各种数组X, y等通常是从电子表格中读取的numpy数组。因此,您可能需要导入numpy(当然),pandas和其他一些库,我们将在下面看到。

这是Python中PLS回归的基本代码块。看一下数据导入和预处理了。

近红外数据导入和预处理

from sys import stdout
 ......
from sklearn.metrics import mean_squared_error, r2_score

接下来,让我们导入数据,这些数据保存在一个csv文件中。该数据由50个新鲜桃子的近红外光谱组成。每个光谱都有对应的Brix值(响应变量)。最后,每个光谱在1100 nm到2300 nm之间取600个波长点,步长为2 nm。

data = pd.read_csv('./datavalues.csv')
# 获取参考值
y = data[......
lues
# 获取光谱
X = data......
axis=1).values
# 获取波长
wl = np.a......
0,2300,2)

558461c4b80ef24168eaf4f1116920e9.png

如果需要,数据可以通过主成分分析进行排序,并使用乘法散射校正进行校正,然而,一个简单但有效的去除基线和线性变化的方法是对数据进行二阶导数。让我们这样做并检查结果。

# 计算二阶导数
X2 = savgol_fi
......
order = 2,deriv=2)
 
# 绘制二阶导数图像
plt.figure(fi......
(8,4.5))
with plt.style.context(('ggplot')):
......
    plt.show()

7971a649479ae34300597f6df6b7bef2.png

偏移已经消失,数据看起来更加紧密。


点击标题查阅往期内容


MATLAB偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据



左右滑动查看更多

f72fd323237c719d5bb925364edb23d2.png

偏最小二乘回归

现在是时候优化偏最小二乘回归了。如上所述,我们想要运行一个具有可变组分数的偏最小二乘回归,并在交叉验证中测试其性能。实际上,我们想要找到最小化均方误差的组件数。让我们为此编写一个函数。

def optimisls_cv(X, ......
=True):
 
    '''运行包括可变组件数量的偏最小二乘回归,最多到n_comp,并计算均方误差'''
 
    mse = []
......
    for i in component:
        pls = PLSR......
        # 交叉验证
        y_cv = cross_v......
 
        comp = 100*(i+1)/n_comp
        # 在同一行上更新状态的技巧
        stdout.write("\r%
......
 
    # 计算并打印均方误差最小值的位置
    msemin = np......
    stdout.write("\n")
 
    if plot_components is True:
        ......
          
            plt.title('PLS')
            plt.xlim(left=-1)
 
        plt.show()
 
    # 使用最佳组件数定义PLS对象
    pls_opt = PLSRe......
    # 对整个数据集进行拟合
    pls_opt.......
t.predict(X)
 
    # 交叉验证
    y_cv = cros......
 cv=10)
 
    # 计算校准和交叉验证的得分
    score_c = r2......
e(y, y_cv)
 
    # 计算校准和交叉验证的均方误差
    mse_c = mean_......
y, y_cv)
 
 
    # 绘制回归图和评估指标
    rangey = m......
- min(y_c)
 
    # 将交叉验证和响应拟合为一条直线
    z = np.poly......
'red', edgecolors='k')
        # 绘制最佳拟合线
        ax.plot(np.p......
, linewidth=1)
        # 绘制理想的1:1线
        ax.plot(y, ......
idth=1)
     
 
        plt.show()
 
    return

这个函数首先运行了一个循环,通过偏最小二乘回归的组件数计算预测的均方误差。其次,它找到最小化均方误差的组件数,并使用该值再次运行偏最小二乘回归。在第二次计算中,计算了一堆指标并将其打印出来。

让我们通过将最大组件数设置为40来运行此函数。

optimise......
, plot_components=True)

第一个图表是均方误差作为组件数的函数。建议最小化均方误差的组件数在该图中突出显示。

a74f0921aa43a01e9c2f6b591416d332.png

第二个图表是实际的回归图,包括预测指标。

fa21a6a762057271e0599037e784d17c.png

同时,在屏幕上会打印出以下信息。

f79e0786889318fe13b2a9760d53fd58.png

该模型在校准数据上似乎表现良好,但在验证集上的表现则不尽如人意。这是机器学习中所谓的过拟合的经典例子。

相关文章
|
13天前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
233 1
|
14天前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
206 0
|
15天前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
23天前
|
数据采集 关系型数据库 MySQL
python爬取数据存入数据库
Python爬虫结合Scrapy与SQLAlchemy,实现高效数据采集并存入MySQL/PostgreSQL/SQLite。通过ORM映射、连接池优化与批量提交,支持百万级数据高速写入,具备良好的可扩展性与稳定性。
|
11月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
326 0
|
11月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
239 2
|
11月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
232 2
|
11月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
155 1
|
11月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集

推荐镜像

更多