数据分享|Python用偏最小二乘回归Partial Least Squares,PLS分析桃子近红外光谱数据可视化

本文涉及的产品
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 数据分享|Python用偏最小二乘回归Partial Least Squares,PLS分析桃子近红外光谱数据可视化

PLS,即偏最小二乘(Partial Least Squares),是一种广泛使用的回归技术,用于帮助客户分析近红外光谱数据点击文末“阅读原文”获取完整代码数据

相关视频

image.png

如果您对近红外光谱学有所了解,您肯定知道近红外光谱是一种次级方法,需要将近红外数据校准到所要测量的参数的主要参考数据上。这个校准只需在第一次进行。一旦校准完成且稳健,就可以继续使用近红外数据预测感兴趣参数的值。

PCR只是使用通过PCA得到的若干主成分构建的回归模型。显然,这并不是最佳选择,而PLS就是解决这个问题的方法。

在本文中,我将向您展示如何使用Python构建一个简单的PLS回归模型。以下是我们将要做的概述。

  1. 展示PLS的基本代码
  2. 讨论我们要分析的数据及所需的预处理。我们将使用新鲜桃子水果的近红外光谱查看文末了解数据免费获取方式,其关联的Brix值与PCR相同。这是我们要校准的量。
  3. 我们将使用交叉验证方法构建我们的模型

PLS Python代码

好的,以下是基于Python 3.5.2的运行PLS交叉验证的基本代码。

# 导入需要的库
from sklearn.metrics import mean_squared_error, r2_score # 导入均方误差和R2得分指标
from sklearn.model_selection import cross_val_predict # 导入交叉验证函数
 
# 定义PLS对象
pls = PLSReg......
nts=5) # 定义保留5个成分的PLS回归模型
 
# 拟合数据
pls.f......
 Y) # 将数据拟合到PLS模型中
 
# 交叉验证
y_cv = cros......
y, cv=10) # 用10折交叉验证计算模型性能
 
# 计算得分
score = r2_score(y,v) # 计算R2得分
mse = mean_squa......
_cv) # 计算均方误差

为了检查我们的校准效果如何,我们使用通常的指标来衡量。我们通过将交叉验证结果y_cv与已知响应进行比较来评估这些指标。为了优化我们的PLS回归参数(例如预处理步骤和成分数量),我们将跟踪这些指标,最常见的是均方差(MSE)。

还有一件事。在实际代码中,各种数组X, y等通常是从电子表格中读取的numpy数组。因此,您可能需要导入numpy(当然),pandas和其他一些库,我们将在下面看到。

这是Python中PLS回归的基本代码块。看一下数据导入和预处理了。

近红外数据导入和预处理

from sys import stdout
 ......
from sklearn.metrics import mean_squared_error, r2_score

接下来,让我们导入数据,这些数据保存在一个csv文件中。该数据由50个新鲜桃子的近红外光谱组成。每个光谱都有对应的Brix值(响应变量)。最后,每个光谱在1100 nm到2300 nm之间取600个波长点,步长为2 nm。

data = pd.read_csv('./datavalues.csv')
# 获取参考值
y = data[......
lues
# 获取光谱
X = data......
axis=1).values
# 获取波长
wl = np.a......
0,2300,2)

558461c4b80ef24168eaf4f1116920e9.png

如果需要,数据可以通过主成分分析进行排序,并使用乘法散射校正进行校正,然而,一个简单但有效的去除基线和线性变化的方法是对数据进行二阶导数。让我们这样做并检查结果。

# 计算二阶导数
X2 = savgol_fi
......
order = 2,deriv=2)
 
# 绘制二阶导数图像
plt.figure(fi......
(8,4.5))
with plt.style.context(('ggplot')):
......
    plt.show()

7971a649479ae34300597f6df6b7bef2.png

偏移已经消失,数据看起来更加紧密。


点击标题查阅往期内容


MATLAB偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据



左右滑动查看更多

f72fd323237c719d5bb925364edb23d2.png

偏最小二乘回归

现在是时候优化偏最小二乘回归了。如上所述,我们想要运行一个具有可变组分数的偏最小二乘回归,并在交叉验证中测试其性能。实际上,我们想要找到最小化均方误差的组件数。让我们为此编写一个函数。

def optimisls_cv(X, ......
=True):
 
    '''运行包括可变组件数量的偏最小二乘回归,最多到n_comp,并计算均方误差'''
 
    mse = []
......
    for i in component:
        pls = PLSR......
        # 交叉验证
        y_cv = cross_v......
 
        comp = 100*(i+1)/n_comp
        # 在同一行上更新状态的技巧
        stdout.write("\r%
......
 
    # 计算并打印均方误差最小值的位置
    msemin = np......
    stdout.write("\n")
 
    if plot_components is True:
        ......
          
            plt.title('PLS')
            plt.xlim(left=-1)
 
        plt.show()
 
    # 使用最佳组件数定义PLS对象
    pls_opt = PLSRe......
    # 对整个数据集进行拟合
    pls_opt.......
t.predict(X)
 
    # 交叉验证
    y_cv = cros......
 cv=10)
 
    # 计算校准和交叉验证的得分
    score_c = r2......
e(y, y_cv)
 
    # 计算校准和交叉验证的均方误差
    mse_c = mean_......
y, y_cv)
 
 
    # 绘制回归图和评估指标
    rangey = m......
- min(y_c)
 
    # 将交叉验证和响应拟合为一条直线
    z = np.poly......
'red', edgecolors='k')
        # 绘制最佳拟合线
        ax.plot(np.p......
, linewidth=1)
        # 绘制理想的1:1线
        ax.plot(y, ......
idth=1)
     
 
        plt.show()
 
    return

这个函数首先运行了一个循环,通过偏最小二乘回归的组件数计算预测的均方误差。其次,它找到最小化均方误差的组件数,并使用该值再次运行偏最小二乘回归。在第二次计算中,计算了一堆指标并将其打印出来。

让我们通过将最大组件数设置为40来运行此函数。

optimise......
, plot_components=True)

第一个图表是均方误差作为组件数的函数。建议最小化均方误差的组件数在该图中突出显示。

a74f0921aa43a01e9c2f6b591416d332.png

第二个图表是实际的回归图,包括预测指标。

fa21a6a762057271e0599037e784d17c.png

同时,在屏幕上会打印出以下信息。

f79e0786889318fe13b2a9760d53fd58.png

该模型在校准数据上似乎表现良好,但在验证集上的表现则不尽如人意。这是机器学习中所谓的过拟合的经典例子。

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
15天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
109 70
|
17天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
17天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
121 68
|
13天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
91 36
|
7天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
47 15
|
11天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
66 18
|
15天前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
16天前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
在数据的海洋里,我们如何能够不迷失方向?通过数据可视化的力量,我们可以将复杂的数据集转化为易于理解的图形和图表。本文旨在为初学者提供一份简明的入门手册,介绍如何使用Python中的Matplotlib库来揭示数据背后的故事。我们将从基础的图表开始,逐步深入到更高级的可视化技术,确保每个步骤都清晰易懂,让初学者也能轻松上手。让我们开始绘制属于你自己的数据图谱吧!
|
20天前
|
测试技术 开发者 Python
使用Python解析和分析源代码
本文介绍了如何使用Python的`ast`模块解析和分析Python源代码,包括安装准备、解析源代码、分析抽象语法树(AST)等步骤,展示了通过自定义`NodeVisitor`类遍历AST并提取信息的方法,为代码质量提升和自动化工具开发提供基础。
34 8
|
27天前
|
机器学习/深度学习 人工智能 数据可视化
使用Python进行数据可视化:探索与实践
在数字时代的浪潮中,数据可视化成为了沟通复杂信息和洞察数据背后故事的重要工具。本文将引导读者通过Python这一强大的编程语言,利用其丰富的库函数,轻松入门并掌握数据可视化的基础技能。我们将从简单的图表创建开始,逐步深入到交互式图表的制作,最终实现复杂数据的动态呈现。无论你是数据分析新手,还是希望提升报告吸引力的专业人士,这篇文章都将是你的理想指南。
37 9