[数据结构]~栈和队列(0-1)

简介: [数据结构]~栈和队列(0-1)

前言



栈和队列作为一种典型的线性表,都是基于线性表(顺序表)实现的,有人可能会问,我都有线性表了,为什么还要知道栈和队列呢?

举个例子:

有个小平大厨,他要去做一道名菜,可能要花费上百道刀工,在此期间他会换不同的刀去完成不同的工艺,我们试想一下难道我用一把刀就不能完成各种刀工,其实也是可以的,那小平大厨为什么要那么麻烦去换不同的刀呢?那大家肯定会说这样方便啊!对没错就是方便。

其实换到数据结构上来说,由于我们会频繁的入栈出栈取栈顶元素,怎么操作都是最常用的,所以我们就定义栈和队列来完成他,省的我们去运用更麻烦的线性表,降低我们出错的概率。

下面我们就一起去认识栈和队列吧!

一 “栈”

:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶另一端称为栈底

压栈(入栈):栈的插入操作,数据会在栈顶

出栈:栈的删除操作叫做出栈。出数据也在栈顶

我们可以理解为出栈就为压栈的逆过程

栈的特点先进后出

二 栈的实现

对于栈来说,由于他都是尾插和尾删数据,所以我们选择用顺序表来实现他,此时间复杂度为O(1)。

1 栈的定义

这里我们在Stack.h的头文件中包含以下内容:

#pragma once
 
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>
 
typedef  int STDataType;
//定义栈
typedef struct Stack
{
  STDataType* arr;//数据类型
  int pos;//数组下标
  int capacity;//栈的容量
}ST;
 
//初始化
void StackInit(ST* ps);
//销毁
void StackDestroy(ST* ps);
//入栈
void StackPush(ST* ps, STDataType x);
//出栈
void StackPop(ST* ps);
显示返回栈顶数据
STDataType StackTop(ST* ps);
//判断栈是否为空
bool StackEmpty(ST* ps);
//返回栈的长度
int StackSize(ST* ps);

2 栈功能的实现

#include"Stack.h"
//初始化
void StackInit(ST* ps)
{
  assert(ps);
  ps->arr = NULL;//初始数组为空
  ps->pos = ps->capacity = 0;//初始为0
}
 
//销毁
void StackDestroy(ST* ps)
{
  assert(ps);
  free(ps->arr);//arr是整个栈的地址
  ps->arr = NULL;
  ps->capacity = ps->pos = 0;
}
 
//入栈
void StackPush(ST* ps, STDataType x)
{
  assert(ps);
  //判断栈的空间是否满
  if (ps->pos == ps->capacity)
  {
    //扩容
    int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;//扩2倍
    STDataType* tmp = (STDataType*)realloc(ps->arr,newCapacity * sizeof(STDataType));
    if (tmp == NULL)
    {
      perror("reamlloc fail");
      exit(-1);
    }
    //跟新容量
    ps->arr = tmp;
    ps->capacity = newCapacity;
  }
  //入栈
  ps->arr[ps->pos] = x;
  ps->pos++;//下标++
}
 
//出栈
void StackPop(ST* ps)
{
  assert(ps);
  //断言栈是否为空
  assert(!StackEmpty(ps));
  --ps->pos;
}
 
//判断栈是否为空
bool StackEmpty(ST* ps)
{
  assert(ps);
  return ps->pos == 0;
}
 
//显示返回栈顶数据
STDataType StackTop(ST* ps)
{
  assert(ps);
  //断言栈是否为空
  assert(!StackEmpty(ps));
  return  ps->arr[ps->pos - 1];//下标已经前移
}
 
//返回栈的长度
int StackSize(ST* ps)
{
  assert(ps);
  return ps->pos;
}

在这里我们重点为大家刨析压栈,出栈,取栈的写法。

(1)压栈

//入栈
void StackPush(ST* ps, STDataType x)
{
  assert(ps);
  //判断栈的空间是否满
  if (ps->pos == ps->capacity)
  {
    //扩容
    int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;//扩2倍
    STDataType* tmp = (STDataType*)realloc(ps->arr,newCapacity * sizeof(STDataType));
    if (tmp == NULL)
    {
      perror("reamlloc fail");
      exit(-1);
    }
    //跟新容量
    ps->arr = tmp;
    ps->capacity = newCapacity;
  }
  //入栈
  ps->arr[ps->pos] = x;
  ps->pos++;//下标++
}

这里我们的实现思路是:

判断栈的空间是否以满;

在进行入栈

(2)出栈

//出栈
void StackPop(ST* ps)
{
  assert(ps);
  //断言栈是否为空
  assert(!StackEmpty(ps));
  --ps->pos;
}

出栈的实现是非常简单的,只要将pos的标记--即可。

(3)取栈

//显示返回栈顶数据
STDataType StackTop(ST* ps)
{
  assert(ps);
  //断言栈是否为空
  assert(!StackEmpty(ps));
  return  ps->arr[ps->pos - 1];//下标已经前移
}

我们直接返回栈顶指针即可

每当我们完成一个功能时候,我们都应该去测试一下:

三 “队列”

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出

入队列:进行插入操作的一端称为队尾

出队列:进行删除操作的一端称为队头

 

四 队列的实现

1 队列的定义

我们同样在Queue头文件在实现:

#pragma once
 
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>
 
typedef  int QDataType;
//定义队列
typedef struct QueueNode
{
  QDataType data;//数据类型
  struct QueueNode* next;
}QNode;
 
//定义指向头和尾的二个指针
typedef struct Queue
{
  QNode* head;
  QNode* tail;
  int size;
}Queue;
 
//初始化
void QueueInit(Queue* pq);
//销毁
void QueueDestroy(Queue* pq);
//入队
void QueuePush(Queue* pq, QDataType x);
//出队
void QueuePop(Queue* pq);
//返回指向队头的数据的指针
QDataType QueueFront(Queue* pq);
//返回指向队尾的数据的指针
QDataType QueueBack(Queue* pq);
//判断队列是否为空
bool QueueEmpty(Queue* pq);
//返回队列的大小
int QueueSize(Queue* pq);

由于栈和队列中定义是差不多,这里就不在过的的说明了。

2 队列的实现

这里就直接上代码,里面有详细的注释,大家不懂就可以看看。

大家在实现队列时可以对照着头文件的函数功能经行实现。

#define  _CRT_SECURE_NO_WARNINGS
 
#include"Queue.h"
 
//初始化
void QueueInit(Queue* pq)
{
  assert(pq);
  pq->head = pq->tail = NULL;
  pq->size = 0;
}
 
//销毁
void QueueDestroy(Queue* pq)
{
  assert(pq);
  QNode* cur = pq->head;
  while (cur)
  {
    QNode* del = cur;
    cur = cur->next;//指向下个节点
    free(del);
  }
  pq->head = pq->tail = NULL;//防止出现野指针
  pq->size = 0;
}
 
//入队
void QueuePush(Queue* pq, QDataType x)
{
  assert(pq);
  //申请节点
  QNode* newNode = (QNode*)malloc(sizeof(QNode));
  if (newNode==NULL)
  {
    perror("malloc fail");
    exit(-1);
  }
  else
  {
    newNode->data = x;
    newNode->next = NULL;
  }
  //队列为空
  if (pq->tail == NULL)
  {
    pq->head = pq->tail = newNode;
  }
  //不为空
  else
  {
    pq->tail->next = newNode;
    pq->tail = newNode;//tail指针指向newNode
  }
  pq->size++;
}
 
//出队
void QueuePop(Queue* pq)
{
  assert(pq);
  //断言队列是否为空
  assert(!QueueEmpty(pq));
  //当队列中就一个数据时
  if (pq->head->next == NULL)
  {
    free(pq->head);
    pq->head = pq->tail = NULL;
  }
  else
  {
    QNode* del = pq->head;
    pq->head = pq->head->next;//头变为下个节点
    free(del);
    del = NULL;
  }
  pq->size--;
}
 
//判断队列是否为空
bool QueueEmpty(Queue* pq)
{
  assert(pq);
  return pq->tail == NULL;
}
 
//返回指向队头的数据的指针
QDataType QueueFront(Queue* pq)
{
  assert(pq);
  //断言队列是否为空
  assert(!QueueEmpty(pq));
  return pq->head->data;
}
 
//返回指向队尾的数据的指针
QDataType QueueBack(Queue* pq)
{
  assert(pq);
  //断言队列是否为空
  assert(!QueueEmpty(pq));
  return pq->tail->data;
}
 
//返回队列的大小
int QueueSize(Queue* pq)
{
  return pq->size;
}

下面我们继续测试一下队列是否能够成功实现自己的功能:

五 栈和队列的区别

栈和队列区别:

(1)操作的限定不同:

是在栈顶进栈顶出,无法对栈底进行直接操作。

队列是在队尾入队头出,可以对二边进行操作。

(2)操作的规则不同:

先进后出,新来的成员从栈顶入,老成员要想离开,就得先让栈顶的成员先离开。

队列先进先出,新来的成员总是在队尾插入,每次离开的成员都是从队头离开。

(3)遍历数据速度不同:

是只能从顶部取数据,也就是说最先进入栈底的,需要遍历整个栈才能取出来,而且在遍历数据的同时需要为数据开辟临时空间,保持数据在遍历前的一致性

队列是通过地址指针进行遍历,而且可以从头部或者尾部进行遍历,但不能同时遍历,无需开辟空间,因为在遍历的过程中不影响数据结构,所以遍历速度要快


目录
打赏
0
2
3
0
33
分享
相关文章
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
114 1
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
26 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
6月前
|
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
307 77
|
5月前
|
STL——栈和队列和优先队列
通过以上对栈、队列和优先队列的详细解释和示例,希望能帮助读者更好地理解和应用这些重要的数据结构。
84 11
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。
|
6月前
|
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
224 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
6月前
|
C++
【C++数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】
【数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】(1)遇到左括号:进栈Push()(2)遇到右括号:若栈顶元素为左括号,则出栈Pop();否则返回false。(3)当遍历表达式结束,且栈为空时,则返回true,否则返回false。本关任务:编写一个程序利用栈判断左、右圆括号是否配对。为了完成本关任务,你需要掌握:栈对括号的处理。(1)遇到左括号:进栈Push()开始你的任务吧,祝你成功!测试输入:(()))
169 7
|
8月前
|
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
765 9
|
8月前
|
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
187 59
AI助理
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问

你好,我是AI助理

可以解答问题、推荐解决方案等