m基于LDPC编译码的matlab误码率仿真,对比SP,MS,NMS以及OMS四种译码算法

简介: MATLAB 2022a仿真实现了LDPC译码算法比较,包括Sum-Product (SP),Min-Sum (MS),Normalized Min-Sum (NMS)和Offset Min-Sum (OMS)。四种算法在不同通信场景有各自优势:SP最准确但计算复杂度高;MS计算复杂度最低但性能略逊;NMS通过归一化提升低SNR性能;OMS引入偏置优化高SNR表现。适用于资源有限或高性能需求的场景。提供的MATLAB代码用于仿真并绘制不同SNR下的误码率曲线。

1.算法仿真效果
matlab2022a仿真结果如下:

image.png
image.png

2.算法涉及理论知识概要
低密度奇偶校验码(LDPC)译码是现代通信系统中一种高效的错误校正技术,广泛应用于无线通信、卫星通信和数据存储等领域。LDPC码因其良好的纠错性能和接近香农极限的潜力而受到重视。本文将详细对比四种主流的迭代译码算法:Sum-Product (SP)、Min-Sum (MS)、Normalized Min-Sum (NMS) 和 Offset Min-Sum (OMS)。

2.1 Sum-Product (SP) 算法
SP算法基于概率论中的信念传播思想,通过迭代的方式逐步修正对每个码字位的估计。它利用校验节点和变量节点之间的消息传递来更新对每个位的置信度。设H为校验矩阵,LLR_y为接收到的软判决信息(对数似然比),消息通过校验节点到变量节点(CN→VN)和变量节点到校验节点(VN→CN)的传递分别表示为:

image.png

2.2 Min-Sum (MS)算法
MS算法是对SP算法的一种简化,它放弃了乘法运算,转而使用最小值操作来近似概率乘积,降低了计算复杂度,但牺牲了一定的性能。

image.png

2.3 Normalized Min-Sum (NMS) 算法
NMS算法是对MS算法的改进,通过引入归一化因子来补偿由于最小值操作导致的性能损失,提高了算法的准确性。

image.png

2.4 Offset Min-Sum (OMS)算法
OMS算法通过引入偏置项(offset)来解决MS算法在高信噪比条件下性能下降的问题,提高了算法的稳健性。

image.png

准确度:SP算法理论上最准确,但计算成本最高。NMS和OMS通过不同机制改进了MS算法的性能,NMS通过归一化提升了低SNR下的性能,而OMS通过偏置项优化了高SNR下的性能。
计算复杂度:MS算法最低,NMS和OMS虽然增加了计算复杂度,但相比SP仍显著降低。
适用场景:对于资源有限的应用,MS和OMS因其较低的复杂度而更受欢迎;在对性能要求极高的场合,NMS或SP可能更合适。
3.MATLAB核心程序
```for jj = 1:1:length(SNR)
%仿真帧
Frames = 50;
error1 = 0;
cout = 0;

sigma  = sqrt(1/10^(SNR(jj)/10));
for i = 1:1:Frames
    [i,SNR(jj) ]

    %编码
    msg         = randi([0, 1], 1, 1008);
    msg_encode  = func_Encoder(Hs, msg);
    %调制
    bpsk_encode = 1 - 2.*msg_encode;

    %AWGN
    bpsk_N      = awgn(bpsk_encode,SNR(jj),'measured');

    %接收
    llr         = 2*bpsk_N/(sigma^2);
    ydecode     = func_MS( H, llr, Iters );
    errs        = sum(msg ~= ydecode);
    error1      = error1 + errs;
    cout        = cout + 1;
end

Ber(1, jj) = error1/(K * cout);

end

figure
semilogy(SNR, Ber,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);

xlabel('Eb/N0(dB)');
ylabel('Ber');
title('最小和MS')
grid on;

save MS.mat SNR Ber
```

相关文章
|
11天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
8天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
14天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
16天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
24天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
19天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。

热门文章

最新文章