【AI 初识】激活函数在神经网络中的作用是什么?

简介: 【5月更文挑战第2天】【AI 初识】激活函数在神经网络中的作用是什么?

image.png

引言:激活函数在神经网络中的关键作用

激活函数是神经网络中至关重要的组成部分之一,它在信息传递过程中扮演着关键的角色。作为一个具备AI前沿科学研究的工程师,深入理解激活函数的作用对于优化神经网络的性能至关重要。在本文中,我们将详细分析激活函数在神经网络中的作用以及其在不同类型的网络中的应用。

1. 提供非线性映射:解决线性模型的局限性

线性模型只能学习到线性关系,而神经网络之所以强大,正是因为它们能够学习非线性关系。激活函数通过引入非线性变换,使得神经网络能够逼近任意复杂的函数。因此,激活函数提供了神经网络的非线性映射能力,从而增强了模型的表达能力。

2. 激活神经元:引入非零输出

激活函数的主要作用是激活神经元,即根据输入计算输出值。这种非零输出使得神经网络能够学习输入数据中的复杂模式和特征。不同类型的激活函数可以产生不同范围的输出值,如sigmoid函数将输出限制在0到1之间,而tanh函数将输出限制在-1到1之间。

3. 改善梯度传播:解决梯度消失和梯度爆炸问题

在神经网络的反向传播算法中,梯度的传播是优化过程中的关键步骤。然而,当网络的层数增加时,梯度往往会出现消失或爆炸的问题。激活函数的选择对于梯度传播至关重要。一些激活函数,如ReLU和其变种,能够有效地缓解梯度消失问题,而另一些激活函数,如sigmoid和tanh,可能导致梯度消失或爆炸。

4. 稀疏表示和去线性化:促进特征的稀疏表示

某些激活函数,如ReLU和其变种,具有稀疏性质,即在激活函数的输入为负值时输出为零,从而使得神经元对于输入的某些特征不敏感,从而达到了特征选择的效果。此外,激活函数的非线性变换还有助于网络实现去线性化,从而提高了网络的表达能力。

5. 改进模型的泛化能力:避免过拟合

适当选择激活函数还有助于改善模型的泛化能力。过度复杂的模型可能会导致过拟合,而合适的激活函数可以帮助控制模型的复杂度,从而提高模型在未见过的数据上的表现。

6. 不同类型的激活函数及其应用

  • Sigmoid函数:主要用于二分类问题的输出层,但在隐藏层中往往由于梯度消失问题不常使用。
  • Tanh函数:类似于Sigmoid函数,但输出范围在-1到1之间,常用于隐藏层。
  • ReLU函数:目前最常用的激活函数之一,解决了梯度消失问题,加速了收敛速度,常用于隐藏层。
  • Leaky ReLU函数:在ReLU的基础上,解决了ReLU中的负值输出问题,有助于缓解死亡ReLU问题。
  • ELU函数:在ReLU的基础上,解决了ReLU中的负值输出问题,并且能够更好地适应负值输入。

7. 结语

激活函数在神经网络中扮演着至关重要的角色,它不仅提供了网络的非线性映射能力,还影响着网络的性能、收敛速度和泛化能力。因此,在设计神经网络时,选择合适的激活函数是至关重要的。

相关文章
|
5月前
|
机器学习/深度学习 人工智能 算法
AI 基础知识从 0.6 到 0.7—— 彻底拆解深度神经网络训练的五大核心步骤
本文以一个经典的PyTorch手写数字识别代码示例为引子,深入剖析了简洁代码背后隐藏的深度神经网络(DNN)训练全过程。
1035 56
|
5月前
|
人工智能 安全 网络安全
2025攻防演习回顾,AI赋能下的网络安全新格局
网络安全实战攻防演习历经9年发展,已成为检验安全体系、洞察威胁趋势的重要手段。攻击呈现实战化、体系化特征,APT、0day、勒索攻击等手段升级,AI、大数据等新技术带来新风险。攻击入口多元化、工具智能化、API成重点目标,“AI+人工”协同攻击加剧威胁。面对挑战,企业需构建纵深防御体系,从被动防御转向主动对抗。瑞数信息通过动态安全技术与AI融合,实现0day防护、漏扫干扰、勒索应急等能力,打造WAAP超融合平台,助力关键基础设施构建智能、协同、前瞻的主动防御体系。
534 1
|
4月前
|
机器学习/深度学习 资源调度 算法框架/工具
AI-ANNE: 将神经网络迁移到微控制器的深度探索——论文阅读
AI-ANNE框架探索将深度学习模型迁移至微控制器的可行路径,基于MicroPython在Raspberry Pi Pico上实现神经网络核心组件,支持本地化推理,推动TinyML在边缘设备中的应用。
305 10
|
4月前
|
人工智能 运维 安全
AI来了,网络安全运维还能靠“人海战术”吗?
AI来了,网络安全运维还能靠“人海战术”吗?
283 28
|
8月前
|
数据采集 机器学习/深度学习 人工智能
运维人的“福音”?AI 驱动的自动化网络监控到底香不香!
运维人的“福音”?AI 驱动的自动化网络监控到底香不香!
1054 0
|
4月前
|
SQL 人工智能 数据挖掘
Apache Doris 4.0 AI 能力揭秘(二):为企业级应用而生的 AI 函数设计与实践
Apache Doris 4.0 原生集成 LLM 函数,将大语言模型能力深度融入 SQL 引擎,实现文本处理智能化与数据分析一体化。通过十大函数,支持智能客服、内容分析、金融风控等场景,提升实时决策效率。采用资源池化管理,保障数据一致性,降低传输开销,毫秒级完成 AI 分析。结合缓存复用、并行执行与权限控制,兼顾性能、成本与安全,推动数据库向 AI 原生演进。
407 0
Apache Doris 4.0 AI 能力揭秘(二):为企业级应用而生的 AI 函数设计与实践
|
4月前
|
人工智能 安全 网络安全
从不确定性到确定性,“动态安全+AI”成网络安全破题密码
2025年国家网络安全宣传周以“网络安全为人民,靠人民”为主题,聚焦AI安全、个人信息保护等热点。随着AI技术滥用加剧,智能化攻击频发,瑞数信息推出“动态安全+AI”防护体系,构建“三层防护+两大闭环”,实现风险前置识别与全链路防控,助力企业应对新型网络威胁,筑牢数字时代安全防线。(238字)
217 1
|
3月前
|
机器学习/深度学习 人工智能 监控
上海拔俗AI软件定制:让技术真正为你所用,拔俗网络这样做
在上海,企业正通过AI软件定制破解通用化难题。该模式以业务场景为核心,量身打造智能解决方案,涵盖场景化模型开发、模块化架构设计与数据闭环优化三大技术维度,推动技术与业务深度融合,助力企业实现高效、可持续的数字化转型。
143 0
|
4月前
|
人工智能 监控 数据可视化
如何破解AI推理延迟难题:构建敏捷多云算力网络
本文探讨了AI企业在突破算力瓶颈后,如何构建高效、稳定的网络架构以支撑AI产品化落地。文章分析了典型AI IT架构的四个层次——流量接入层、调度决策层、推理服务层和训练算力层,并深入解析了AI架构对网络提出的三大核心挑战:跨云互联、逻辑隔离与业务识别、网络可视化与QoS控制。最终提出了一站式网络解决方案,助力AI企业实现多云调度、业务融合承载与精细化流量管理,推动AI服务高效、稳定交付。
|
5月前
|
人工智能 自动驾驶 物联网
AI 来当“交通警察”:如何优化 5G 网络资源分配?
AI 来当“交通警察”:如何优化 5G 网络资源分配?
199 9