【Python机器学习专栏】关联规则学习:Apriori算法详解

简介: 【4月更文挑战第30天】Apriori算法是一种用于关联规则学习的经典算法,尤其适用于购物篮分析,以发现商品间的购买关联。该算法基于支持度和置信度指标,通过迭代生成频繁项集并提取满足阈值的规则。Python中可借助mlxtend库实现Apriori,例如处理购物篮数据,设置支持度和置信度阈值,找出相关规则。

在数据分析和数据挖掘中,关联规则学习是一种非常重要的技术,它旨在从大型数据集中发现变量之间的关系。关联规则学习的最典型应用场景就是“购物篮分析”,通过了解哪些商品经常一起被购买,零售商可以制定更有效的销售策略。Apriori算法是关联规则学习中最常用的一种算法,本文将对Apriori算法进行详细的介绍,并通过Python实现该算法。

一、关联规则学习概述

关联规则学习是一种在大型数据集中寻找项集之间有趣关系的方法。一个关联规则可以表示为X -> Y,其中X和Y是不相交的项集,即X ∩ Y = ∅。关联规则学习的主要目标是找出支持度和置信度均满足一定阈值的强关联规则。

支持度(Support):表示项集{X, Y}在数据集中出现的频率,记作P(X, Y)。
置信度(Confidence):表示在出现项集X的条件下,项集Y也出现的概率,记作P(Y|X)。
二、Apriori算法原理

Apriori算法是一种基于候选项集生成和测试的关联规则学习算法。它利用了两个重要的性质来减少候选项集的数量:

如果一个项集是频繁的,则它的所有子集也一定是频繁的。
如果一个项集是非频繁的,则它的所有超集也一定是非频繁的。
基于这两个性质,Apriori算法通过迭代的方式生成候选项集,并计算每个候选项集的支持度,从而找出所有频繁的项集。在找到频繁的项集后,Apriori算法再从中提取出满足置信度阈值的关联规则。

三、Apriori算法步骤

数据准备:将数据集转换为适合Apriori算法处理的格式,通常是将数据集转换为布尔型矩阵,其中每一行代表一个事务,每一列代表一个项。

计算频繁1-项集:遍历数据集中的每一项,统计每项的出现次数,得到频繁1-项集列表L1。

迭代生成频繁k-项集(k > 1):

生成候选项集:根据L(k-1)和Apriori性质,生成候选k-项集列表Ck。
计算候选项集的支持度:遍历数据集中的每一个事务,统计Ck中每个候选项集的出现次数,从而计算支持度。
生成频繁k-项集:根据支持度阈值,从Ck中筛选出频繁的k-项集,形成列表Lk。
提取关联规则:从频繁项集中提取出满足置信度阈值的关联规则。

四、Python实现Apriori算法

在Python中,我们可以使用mlxtend库来实现Apriori算法。下面是一个简单的示例:

python
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

示例数据集(购物篮数据)

dataset = [['牛奶', '面包', '黄油'],
['面包', '黄油', '尿布'],
['牛奶', '尿布', '啤酒', '鸡蛋'],
['面包', '牛奶', '尿布', '啤酒'],
['面包', '牛奶', '尿布', '鸡蛋'],
['面包', '黄油', '尿布', '啤酒'],
['面包', '黄油', '尿布', '可乐']]

将数据集转换为布尔型矩阵

def list_to_onehot(lst, vocabulary):
return [1 if word in lst else 0 for word in vocabulary]

合并所有事务形成词汇表

vocabulary = set([item for transaction in dataset for item in transaction])
transactions = [[list_to_onehot(transaction, vocabulary)] for transaction in dataset]

将布尔型矩阵转换为DataFrame

df = pd.DataFrame(transactions, columns=vocabulary)

计算频繁项集(设定支持度阈值为0.2)

frequent_itemsets = apriori(df, min_support=0.2, use_colnames=True)

提取关联规则(设定置信度阈值为0.7)

rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)

打印关联规则

print(rules[['antecedents', 'consequents', 'support', 'confidence']])
在上面的代码中,我们首先定义了一个示例数据集,然后将其转换为布尔型矩阵。接着,我们使用mlxtend库中的

相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
11 1
|
6天前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
14 2
|
7天前
|
机器学习/深度学习 算法 Python
深度解析机器学习中过拟合与欠拟合现象:理解模型偏差背后的原因及其解决方案,附带Python示例代码助你轻松掌握平衡技巧
【10月更文挑战第10天】机器学习模型旨在从数据中学习规律并预测新数据。训练过程中常遇过拟合和欠拟合问题。过拟合指模型在训练集上表现优异但泛化能力差,欠拟合则指模型未能充分学习数据规律,两者均影响模型效果。解决方法包括正则化、增加训练数据和特征选择等。示例代码展示了如何使用Python和Scikit-learn进行线性回归建模,并观察不同情况下的表现。
69 3
|
6天前
|
机器学习/深度学习 存储 算法
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
16 1
|
7天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
32 2
|
7天前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
20 1
|
11天前
|
机器学习/深度学习 人工智能 数据挖掘
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第6天】在人工智能领域,机器学习已成为核心技术。本文指导初学者使用Python与Scikit-learn入门机器学习,涵盖基本概念、环境搭建、数据处理、模型训练及评估等环节。Python因简洁性及其生态系统成为首选语言,而Scikit-learn则提供了丰富工具,简化数据挖掘与分析流程。通过实践示例,帮助读者快速掌握基础知识,为进一步深入研究奠定坚实基础。
19 4
|
19天前
|
机器学习/深度学习 算法 数据挖掘
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧1
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
36 5
|
19天前
|
机器学习/深度学习 并行计算 大数据
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
45 3
|
19天前
|
机器学习/深度学习 数据采集 分布式计算
【Python篇】深入机器学习核心:XGBoost 从入门到实战
【Python篇】深入机器学习核心:XGBoost 从入门到实战
49 3