【Python 机器学习专栏】K-means 聚类算法在 Python 中的实现

简介: 【4月更文挑战第30天】K-means 是一种常见的聚类算法,用于将数据集划分为 K 个簇。其基本流程包括初始化簇中心、分配数据点、更新簇中心并重复此过程直到收敛。在 Python 中实现 K-means 包括数据准备、定义距离函数、初始化、迭代和输出结果。虽然算法简单高效,但它需要预先设定 K 值,且对初始点选择敏感,可能陷入局部最优。广泛应用在市场分析、图像分割等场景。理解原理与实现对应用聚类分析至关重要。

在机器学习领域,聚类分析是一种重要的探索性数据分析方法。K-means 聚类算法是其中一种常用的聚类算法,它简单高效,在许多实际应用中都有广泛的应用。本文将详细介绍 K-means 聚类算法的原理,并展示如何在 Python 中实现该算法。

一、K-means 聚类算法的原理

K-means 聚类算法的基本思想是将数据集划分为 K 个簇,使得每个数据点都属于距离其最近的簇中心。其主要步骤如下:

  1. 初始化:随机选择 K 个数据点作为初始簇中心。
  2. 分配数据点:计算每个数据点到各个簇中心的距离,将数据点分配到距离最近的簇中心所在的簇。
  3. 更新簇中心:根据分配到各个簇的数据点,重新计算簇中心的位置。
  4. 重复步骤 2 和 3:直到簇中心的位置不再发生明显变化或达到预设的迭代次数。

二、K-means 聚类算法的实现步骤

  1. 数据准备:加载数据集并进行必要的预处理。
  2. 定义距离函数:通常使用欧几里得距离来计算数据点之间的距离。
  3. 初始化簇中心:随机选择 K 个数据点作为初始簇中心。
  4. 迭代过程:重复执行分配数据点和更新簇中心的步骤,直到满足停止条件。
  5. 输出结果:得到最终的聚类结果和簇中心。

三、在 Python 中实现 K-means 聚类算法

以下是一个简单的 K-means 聚类算法的 Python 实现示例:

import numpy as np
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

# 生成模拟数据集
X, y = make_blobs(n_samples=500, centers=3, cluster_std=0.6, random_state=0)

# 定义 K-means 聚类算法
def kmeans_clustering(X, K):
    # 初始化簇中心
    centroids = X[np.random.choice(X.shape[0], K, replace=False), :]

    while True:
        # 分配数据点到簇
        distances = np.sqrt(((X - centroids[:, np.newaxis]) ** 2).sum(axis=2))
        labels = np.argmin(distances, axis=0)

        # 更新簇中心
        new_centroids = np.array([X[labels == i].mean(axis=0) for i in range(K)])

        # 检查簇中心是否变化
        if np.allclose(centroids, new_centroids):
            break

        centroids = new_centroids

    return labels, centroids

# 执行 K-means 聚类
K = 3
labels, centroids = kmeans_clustering(X, K)

# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='rainbow')
plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=200, c='black')
plt.show()

四、K-means 聚类算法的优缺点

  1. 优点:简单易懂,计算效率高,对大规模数据集也能较好地处理。
  2. 缺点:需要事先指定簇的数量 K,对初始簇中心敏感,可能会陷入局部最优解。

五、应用场景

K-means 聚类算法广泛应用于市场细分、客户分类、图像分割等领域。通过对数据的聚类分析,可以发现数据中的潜在模式和结构。

六、总结

K-means 聚类算法是一种经典的聚类算法,在 Python 中有多种实现方式。理解其原理和实现过程对于应用聚类分析解决实际问题具有重要意义。在实际应用中,需要根据数据特点和需求选择合适的聚类算法,并结合其他方法进行进一步的分析和处理。

希望本文能为你提供关于 K-means 聚类算法在 Python 中实现的全面认识,助力你在机器学习的探索中取得更好的成果。

相关文章
|
3天前
|
前端开发 搜索推荐 算法
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
中草药管理与推荐系统。本系统使用Python作为主要开发语言,前端使用HTML,CSS,BootStrap等技术和框架搭建前端界面,后端使用Django框架处理应用请求,使用Ajax等技术实现前后端的数据通信。实现了一个综合性的中草药管理与推荐平台。具体功能如下: - 系统分为普通用户和管理员两个角色 - 普通用户可以登录,注册、查看物品信息、收藏物品、发布评论、编辑个人信息、柱状图饼状图可视化物品信息、并依据用户注册时选择的标签进行推荐 和 根据用户对物品的评分 使用协同过滤推荐算法进行推荐 - 管理员可以在后台对用户和物品信息进行管理编辑
34 12
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
|
5天前
|
机器学习/深度学习 数据采集 人工智能
使用Python实现简单的机器学习分类器
【8月更文挑战第37天】本文将引导读者了解如何利用Python编程语言构建一个简单的机器学习分类器。我们将从基础概念出发,通过代码示例逐步深入,探索数据预处理、模型选择、训练和评估过程。文章旨在为初学者提供一条清晰的学习路径,帮助他们理解并实现基本的机器学习任务。
|
3天前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【9月更文挑战第9天】在数据科学领域,机器学习如同璀璨明珠,吸引无数探索者。尤其对于新手而言,纷繁复杂的算法常让人感到迷茫。本文将以决策树为切入点,带您从Python机器学习的新手逐步成长为高手。决策树以其直观易懂的特点成为入门利器。通过构建决策树分类器并应用到鸢尾花数据集上,我们展示了其基本用法及效果。掌握决策树后,还需深入理解其工作原理,调整参数,并探索集成学习方法,最终将所学应用于实际问题解决中,不断提升技能。愿这棵智慧之树助您成为独当一面的大师。
13 3
|
5天前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【9月更文挑战第7天】当我们身处数据海洋,如何提炼出有价值的洞察?决策树作为一种直观且强大的机器学习算法,宛如智慧之树,引领我们在繁复的数据中找到答案。通过Python的scikit-learn库,我们可以轻松实现决策树模型,对数据进行分类或回归分析。本教程将带领大家从零开始,通过实际案例掌握决策树的原理与应用,探索数据中的秘密。
14 1
|
10天前
|
机器学习/深度学习 算法 数据挖掘
|
2天前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【9月更文挑战第10天】神经网络是开启人工智能大门的钥匙,不仅是一种技术,更是模仿人脑思考的奇迹。本文从基础概念入手,通过Python和TensorFlow搭建手写数字识别的神经网络,逐步解析数据加载、模型定义、训练及评估的全过程。随着学习深入,我们将探索深度神经网络、卷积神经网络等高级话题,并掌握优化模型性能的方法。通过不断实践,你将能构建自己的AI系统,解锁机器学习的无限潜能。
9 0
|
5天前
|
机器学习/深度学习 人工智能 算法
探索人工智能:机器学习的基本原理与Python代码实践
【9月更文挑战第6天】本文深入探讨了人工智能领域中的机器学习技术,旨在通过简明的语言和实际的编码示例,为初学者提供一条清晰的学习路径。文章不仅阐述了机器学习的基本概念、主要算法及其应用场景,还通过Python语言展示了如何实现一个简单的线性回归模型。此外,本文还讨论了机器学习面临的挑战和未来发展趋势,以期激发读者对这一前沿技术的兴趣和思考。
|
14天前
|
机器学习/深度学习 算法 数据挖掘
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
|
6天前
|
机器学习/深度学习 数据采集 算法
数据挖掘和机器学习算法
数据挖掘和机器学习算法
|
9天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
81 1