[译][AI OpenAI-doc] 助手 API Beta

简介: 助手 API 允许你在自己的应用程序中构建 AI 助手。助手具有指令,并可以利用模型、工具和文件来响应用户的查询。目前,助手 API 支持三种类型的工具:代码解释器、文件搜索和函数调用。

助手 API 允许你在自己的应用程序中构建 AI 助手。助手具有指令,并可以利用模型、工具和文件来响应用户的查询。目前,助手 API 支持三种类型的工具:代码解释器、文件搜索和函数调用。

你可以通过助手 playground 探索助手 API 的功能,或者按照本指南中的逐步集成步骤构建。

概述

助手 API 的典型集成流程如下:

  1. 通过定义其自定义指令并选择模型来创建助手。如有需要,添加文件并启用 Code Interpreter、File Search 和 Function calling 等工具。
  2. 当用户开始对话时,创建一个 Thread。
  3. 当用户提出问题时,在 Thread 中添加消息。
  4. 运行助手在 Thread 上调用模型和工具生成响应。

本入门指南将逐步介绍创建和运行使用 Code Interpreter 的助手的关键步骤。在本示例中,我们将创建一个启用了 Code Interpreter 工具的个人数学辅导助手。

对 Assistants API 的调用要求您传递一个 beta HTTP 头。如果您使用 OpenAI 的官方 Python 或 Node.js SDK,这将自动处理。

OpenAI-Beta: assistants=v2

步骤 1:创建助手

助手代表一个实体,可以根据模型、指令和工具等多个参数进行配置,以响应用户的消息。

from openai import OpenAI
client = OpenAI()

assistant = client.beta.assistants.create(
  name="Math Tutor",
  instructions="You are a personal math tutor. Write and run code to answer math questions.",
  tools=[{
   "type": "code_interpreter"}],
  model="gpt-4-turbo",
)

步骤 2:创建线程

线程表示用户与一个或多个助手之间的对话。当用户(或您的 AI 应用程序)与您的助手开始对话时,您可以创建一个线程。

thread = client.beta.threads.create()

步骤 3:向线程添加消息

用户或应用程序创建的消息内容被添加为消息对象到线程中。消息可以包含文本和文件。您可以向线程添加的消息数量没有限制 — 我们会智能地截断任何不符合模型上下文窗口的内容。

message = client.beta.threads.messages.create(
  thread_id=thread.id,
  role="user",
  content="I need to solve the equation `3x + 11 = 14`. Can you help me?"
)

步骤 4:创建运行

一旦所有用户消息都添加到线程中,您可以使用任何助手运行该线程。创建一个运行使用与助手关联的模型和工具来生成响应。这些响应作为助手消息添加到线程中。

使用流式传输

您可以使用 Python 和 Node SDK 中的“create and stream”助手来创建运行并流式传输响应。

from typing_extensions import override
from openai import AssistantEventHandler

# 首先,我们创建一个 EventHandler 类来定义我们希望如何处理响应流中的事件。

class EventHandler(AssistantEventHandler):    
  @override
  def on_text_created(self, text) -> None:
    print(f"\nassistant > ", end="", flush=True)

  @override
  def on_text_delta(self, delta, snapshot):
    print(delta.value, end="", flush=True)

  def on_tool_call_created(self, tool_call):
    print(f"\nassistant > {tool_call.type}\n", flush=True)

  def on_tool_call_delta(self, delta, snapshot):
    if delta.type == 'code_interpreter':
      if delta.code_interpreter.input:
        print(delta.code_interpreter.input, end="", flush=True)
      if delta.code_interpreter.outputs:
        print(f"\n\noutput >", flush=True)
        for output in delta.code_interpreter.outputs:
          if output.type == "logs":
            print(f"\n{output.logs}", flush=True)

# 然后,我们使用带有 `EventHandler` 类的 `stream` SDK 助手来创建运行并流式传输响应。

with client.beta.threads.runs.stream(
  thread_id=thread.id,
  assistant_id=assistant.id,
  instructions="请以简•多名义为用户。用户拥有高级帐户。",
  event_handler=EventHandler(),
) as stream:
  stream.until_done()

在我们的 API 参考中查看完整的助手流事件列表。您还可以在 Python & Node 仓库文档中查看这些事件的 SDK 事件监听器列表。

不使用流式传输

运行是异步的,这意味着您希望通过轮询运行对象来监视其状态,直到达到终端状态。为了方便起见,“创建和轮询”SDK 辅助工具同时帮助创建运行并轮询其完成状态。

run = client.beta.threads.runs.create_and_poll(
  thread_id=thread.id,
  assistant_id=assistant.id,
  instructions="请以简•多名义为用户。用户拥有高级帐户。"
)

一旦运行完成,您可以列出由助手添加到线程中的消息。

if run.status == 'completed': 
  messages = client.beta.threads.messages.list(
    thread_id=thread.id
  )
  print(messages)
else:
  print(run.status)

如果您想查看在此运行期间进行的任何工具调用,则还可以列出此运行的运行步骤。


相关文章
|
1月前
|
人工智能 IDE API
AI驱动的开发者工具:打造沉浸式API集成体验
本文介绍了阿里云在过去十年中为开发者提供的API服务演变。内容分为两大部分:一是从零开始使用API的用户旅程,涵盖API的发现、调试与集成;二是回顾阿里云过去十年为开发者提供的服务及发展历程。文中详细描述了API从最初的手写SDK到自动化生成SDK的变化,以及通过API Explorer、IDE插件和AI助手等工具提升开发者体验的过程。这些工具和服务旨在帮助开发者更高效地使用API,减少配置和调试的复杂性,提供一站式的解决方案。
|
4天前
|
人工智能 JSON 自然语言处理
AI 程序员的4个分身 | 代码生成专家+注释精灵+API集成助手+智能调试伙伴
AI 程序员的4个分身 | 代码生成专家+注释精灵+API集成助手+智能调试伙伴
104 35
|
2天前
|
人工智能 Rust 安全
DeepClaude:结合 DeepSeek R1 和 Claude AI 各自优势开发的 AI 应用平台,支持 API 调用和零延迟的即时响应
DeepClaude 是一个开源的 AI 应用开发平台,结合了 DeepSeek R1 和 Claude 模型的优势,提供即时响应、端到端加密和高度可配置的功能。
124 4
DeepClaude:结合 DeepSeek R1 和 Claude AI 各自优势开发的 AI 应用平台,支持 API 调用和零延迟的即时响应
|
1月前
|
机器学习/深度学习 人工智能 安全
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
GLM-Zero 是智谱AI推出的深度推理模型,专注于提升数理逻辑、代码编写和复杂问题解决能力,支持多模态输入与完整推理过程输出。
214 24
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
|
26天前
|
人工智能 自然语言处理 API
百聆:集成Deepseek API及语音技术的开源AI语音对话助手,实时交互延迟低至800ms
百聆是一款开源的AI语音对话助手,结合ASR、VAD、LLM和TTS技术,提供低延迟、高质量的语音对话体验,适用于边缘设备和低资源环境。
606 4
百聆:集成Deepseek API及语音技术的开源AI语音对话助手,实时交互延迟低至800ms
|
1月前
|
人工智能 JSON 安全
DeepSeek Engineer:集成 DeepSeek API 的开源 AI 编程助手,支持文件读取、编辑并生成结构化响应
DeepSeek Engineer 是一款开源AI编程助手,通过命令行界面处理用户对话并生成结构化JSON,支持文件操作和代码生成。
737 6
DeepSeek Engineer:集成 DeepSeek API 的开源 AI 编程助手,支持文件读取、编辑并生成结构化响应
|
5天前
|
API PHP 开发者
速卖通商品详情接口(速卖通API系列)
速卖通(AliExpress)是阿里巴巴旗下的跨境电商平台,提供丰富的商品数据。通过速卖通开放平台(AliExpress Open API),开发者可获取商品详情、订单管理等数据。主要功能包括商品搜索、商品详情、订单管理和数据报告。商品详情接口aliexpress.affiliate.productdetail.get用于获取商品标题、价格、图片等详细信息。开发者需注册账号并创建应用以获取App Key和App Secret,使用PHP等语言调用API。该接口支持多种请求参数和返回字段,方便集成到各类电商应用中。
|
11天前
|
JSON API 数据格式
微店商品列表接口(微店 API 系列)
微店商品列表接口是微店API系列的一部分,帮助开发者获取店铺中的商品信息。首先需注册微店开发者账号并完成实名认证,选择合适的开发工具如PyCharm或VS Code,并确保熟悉HTTP协议和JSON格式。该接口支持GET/POST请求,主要参数包括店铺ID、页码、每页数量和商品状态等。响应数据为JSON格式,包含商品详细信息及状态码。Python示例代码展示了如何调用此接口。应用场景包括商品管理系统集成、数据分析、多平台数据同步及商品展示推广。
|
3天前
|
JSON 前端开发 API
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
24 5
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
|
2天前
|
监控 供应链 搜索推荐
亚马逊商品详情接口(亚马逊 API 系列)
亚马逊作为全球最大的电商平台之一,提供了丰富的商品资源。开发者和电商从业者可通过亚马逊商品详情接口获取商品的描述、价格、评论、排名等数据,对市场分析、竞品研究、价格监控及业务优化具有重要价值。接口基于MWS服务,支持HTTP/HTTPS协议,需注册并获得API权限。Python示例展示了如何使用mws库调用接口获取商品详情。应用场景包括价格监控、市场调研、智能选品、用户推荐和库存管理等,助力电商运营和决策。
44 23

热门文章

最新文章