数据结构第三课 -----线性表之双向链表

简介: 数据结构第三课 -----线性表之双向链表

链表的差别

  1. 无头单向非循环链表:结构简单,一般不会单独用来存数据。实际中更多是作为其他数据结构的子结构,如哈希桶、图的邻接表等等。另外这种结构在笔试面试中出现很多。
  2. 带头双向循环链表:结构最复杂,一般用在单独存储数据。实际中使用的链表数据结构,都是带头双向循环链表。另外这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带来很多优势,实现反而简单了,后面我们代码实现了就知道了。


带头双向循环链表的实现

我们需要的当这种链表为空时,

这个小知识一定要记住

链表初始化

DLists* plist = (DLists*)malloc(sizeof(DLists));
  plist->next = plist;
  plist->prev = plist;

一个节点要包含三部分分别是值,两个指针


节点创建

//创建节点
DLists* CreateNode(DLDataType elemest)
{
  DLists* newnode = (DLists*)malloc(sizeof(DLists));
  newnode->next = newnode;
  newnode->prev = newnode;
  newnode->val = elemest;
  return newnode;
}

链表的尾插

void DLPushBack(DLists* plist, DLDataType elelmest)
{
  assert(plist);
  //创建节点 
  DLists* newnode = CreateNode(elelmest);
  DLists* n = plist->prev;
  newnode->next = plist;
  newnode->prev = n;
  n->next = newnode;
  plist->prev = newnode;

}

这里我们只需要更改四个指针指向就可以,分别是哨兵位的 、prev 和新节点的prev 、next和旧节点的next

链表尾删

void DLPopBack(DLists* plist)
{
  assert(plist->next != plist && plist);
  //保存最后一个节点的地址
  DLists* p = plist->prev;
  plist->prev = p->prev;
  DLists* p1 = p->prev;
  p1->next = plist;
  free(p);
}

这样写可以防止只有一个节点的时候报错

我们可以创建两个指针,一个指向要free的节点,一个是要和哨兵位关联的节点也就是d2

打印链表

我们可以从d1这个节点开始打印,遇见头节点就结束

//打印
void DLPrint(DLists* plist)
{
  assert(plist);
  printf("哨兵位");
  DLists* tail = plist->next;
  while (tail != plist)
  {
    printf("<=>%d", tail->val);
    tail = tail->next;
  }
  printf("<=>哨兵位\n");
}

链表头插

我们可以创建一个指针用于存储d1的地址,然后把节点插入,这样可以简单快捷

//头插
void DLPushFront(DLists* plist, DLDataType elemest)
{
  assert(plist);
  DLists* n1 = plist->next;
  //创建节点
  DLists* newnode = CreateNode(elemest);
  plist->next = newnode;
  newnode->prev = plist;
  n1->prev = newnode;
  newnode->next = n1;
}

链表头删

当我们删除到哨兵位就不要删除了

//头删
void DLPopFront(DLists* plist)
{
  assert(plist->next != plist && plist);
  // 保存下一个节点
  DLists *nextnode = plist->next;
  DLists* nexnode_next = nextnode->next;
  plist->next = nexnode_next;
  nexnode_next->prev = plist;
  free(nextnode);
  
}

判断链表是否为空

// 判断链表是否为空
bool Empty(DLists* plist)
{
  assert(plist);
  return plist->next == plist;
}

链表pos前插入

//在pos前面插入
DLists* DLPushbefore(DLists* plist, DLists* pos, DLDataType elemest)
{
  assert(plist);
  //创建节点
  DLists* newnode = CreateNode(elemest);
  //pos的前一个节点
  DLists* node = pos->prev;
  pos->prev = newnode;
  newnode->next = pos;
  newnode->prev = node;
  node->next = newnode;

}

计算链表长度

// 长度
int DLSize(DLists* plist)
{
  assert(plist);
  DLists* tail = plist->next;
  int size = 0;
  while (tail != plist)
  {
    size++;
    tail = tail->next;
  }
  return size;


}

链表删除pos前一个节点

//删除pos前一个节点
DLists* DLPopbefore(DLists* plist, DLists* pos)
{
  assert(plist && pos);
  assert(pos->prev != plist);
  //前一个节点
  DLists* n2 = pos->prev;
  //前前一个节点
  DLists* n1 = n2->prev;
  n1->next = pos;
  pos->prev = n1;
  free(n2);
}

删除pos节点

// 删除 pos节点
DLists* DLPop(DLists* plist, DLists* pos)
{
  assert(plist && pos);
  assert(pos!= plist);
  //pos前一个节点
  DLists* n2 = pos->prev;
  //pos后一个节点
  DLists* n1 = pos->next;
  n2->next = n1;
  n1->prev = n2;
  free(pos);
}

释放链表

从d1开释放,遇见head停止

//释放链表
void DLDestroy(DLists** plist)
{
  assert(*plist && plist);
  DLists* tail = (*plist)->next;
  while (tail != *plist)
  {
    DLists* node = tail;
    tail = tail->next;
    free(node);
  }
  free(*plist);
  *plist = NULL;

}

顺序表和链表的差异

链表的优势

  1. 任意位置插入和删除都是O(1),前提是知道位置
  2. 按需申请和释放


缺点问题

3. 下标随机访问不方便,物理空间不连续,O(n)

4. 链表不好排序


顺序表的问题

5. 头部插入或者中间插入删除效率低下,要移动数据

6. 空间不够要扩容,扩容会有一定消耗且可能存在一定的空间浪费.

7. 只适合尾插尾删


优势

支持下标的随机访问

相关文章
|
8天前
|
Java
java数据结构,双向链表的实现
文章介绍了双向链表的实现,包括数据结构定义、插入和删除操作的代码实现,以及双向链表的其他操作方法,并提供了完整的Java代码实现。
java数据结构,双向链表的实现
|
1月前
|
存储 Java 索引
【数据结构】链表从实现到应用,保姆级攻略
本文详细介绍了链表这一重要数据结构。链表与数组不同,其元素在内存中非连续分布,通过指针连接。Java中链表常用于需动态添加或删除元素的场景。文章首先解释了单向链表的基本概念,包括节点定义及各种操作如插入、删除等的实现方法。随后介绍了双向链表,说明了其拥有前后两个指针的特点,并展示了相关操作的代码实现。最后,对比了ArrayList与LinkedList的不同之处,包括它们底层实现、时间复杂度以及适用场景等方面。
44 10
【数据结构】链表从实现到应用,保姆级攻略
|
8天前
|
存储 Java
java数据结构,线性表顺序存储(数组)的实现
文章介绍了Java中线性表顺序存储(数组)的实现。线性表是数据结构的一种,它使用数组来实现。文章详细描述了线性表的基本操作,如增加、查找、删除、修改元素,以及其他操作如遍历、清空、求长度等。同时,提供了完整的Java代码实现,包括MyList接口和MyLinearList实现类。通过main函数的测试代码,展示了如何使用这些方法操作线性表。
|
2月前
|
存储 算法
【初阶数据结构篇】顺序表和链表算法题
此题可以先找到中间节点,然后把后半部分逆置,最近前后两部分一一比对,如果节点的值全部相同,则即为回文。
|
2月前
|
存储 测试技术
【初阶数据结构篇】双向链表的实现(赋源码)
因为头结点的存在,plist指针始终指向头结点,不会改变。
|
2月前
|
存储 测试技术
【初阶数据结构篇】单链表的实现(附源码)
在尾插/尾删中,都需要依据链表是否为空/链表是否多于一个节点来分情况讨论,目的是避免对空指针进行解引用造成的错误。
|
2月前
|
算法
【数据结构与算法】共享双向链表
【数据结构与算法】共享双向链表
14 0
|
2月前
|
算法
【数据结构与算法】双向链表
【数据结构与算法】双向链表
13 0
|
5天前
|
算法 安全 测试技术
golang 栈数据结构的实现和应用
本文详细介绍了“栈”这一数据结构的特点,并用Golang实现栈。栈是一种FILO(First In Last Out,即先进后出或后进先出)的数据结构。文章展示了如何用slice和链表来实现栈,并通过golang benchmark测试了二者的性能差异。此外,还提供了几个使用栈结构解决的实际算法问题示例,如有效的括号匹配等。
golang 栈数据结构的实现和应用
01_设计一个有getMin功能的栈
01_设计一个有getMin功能的栈