一分钟部署 Llama3 中文大模型,没别的,就是快

本文涉及的产品
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
可观测监控 Prometheus 版,每月50GB免费额度
函数计算FC,每月15万CU 3个月
简介: Meta开源了80亿和700亿参数的大模型,挑战百度创始人李彦宏的观点。这些模型在性能上逼近GPT-4和Claude3。此外,一个400B的超大模型即将发布。Huggingface上已有多个Llama3中文微调版本。无GPU用户可使用量化模型在CPU上运行,如8B模型用8bit量化,70B模型用4bit量化。最佳中文微调版是zhouzr/Llama3-8B-Chinese-Chat-GGUF,可在三分钟内通过Sealos公有云快速部署,搭配WebUI如Lobe Chat进行交互。

前段时间百度创始人李彦宏信誓旦旦地说开源大模型会越来越落后,闭源模型会持续领先。随后小扎同学就给了他当头一棒,向他展示了什么叫做顶级开源大模型。

美国当地时间4月18日,Meta 在官网上发布了两款开源大模型,参数分别达到 80 亿 (8B) 和 700 亿 (70B),是目前同体量下性能最好的开源模型,而且直接逼近了一线顶级商业模型 GPT-4 和 Claude3。

与此同时,还有一个 400B 的超大杯模型还在路上,估计很快就会放出来,到时候就真的碾压了,某些声称闭源遥遥领先的哥们就等着哭吧 😢

虽然才过去短短几日,Huggingface 上已经涌现了非常多的 Llama3 中文微调版,令人眼花缭乱:

想不想自己也部署一个 Llama3 中文版?

对于没有 GPU 的同学,我们可以使用微调的量化模型来使用 CPU 运行。不同的量化方法会带来不同的性能损失:

  1. 8bit 量化没有性能损失。
  2. AWQ 4bit 量化对 8B 模型来说有 2%性能损失,对 70B 模型只有 0.05%性能损失。
  3. 参数越大的模型,低 bit 量化损失越低。AWQ 3bit 70B 也只有 2.7%性能损失,完全可接受。

综合来说,如果追求无任何性能损失,8B 模型用 8bit 量化,70B 模型用 4bit 量化

如果能接受 2-3%损失,8B 模型用 4bit 量化,70B 模型用 3bit 量化。

目前效果最好的中文微调版是 HuggingFace 社区的 zhouzr/Llama3-8B-Chinese-Chat-GGUF 模型,该模型采用 firefly-train-1.1M、moss-003-sft-data、school_math_0.25M、弱智吧(没错,就是那个弱智吧~)数据集,使模型能够使用中文回答用户的提问。

下面我们来看看如何在三分钟内快速部署这个模型吧。

直接在浏览器中打开以下链接:

然后点击右上角的「去 Sealos 部署」。

如果您是第一次使用 Sealos,则需要注册登录 Sealos 公有云账号,登录之后会立即跳转到模板的部署页面。

跳转进来之后,点击右上角的「部署应用」开始部署,部署完成后,直接点击应用的「详情」进入该应用的详情页面。

等待实例状态变成 running 之后,Llama3 中文版模型就部署好了,默认会提供一个与 OpenAI 官方接口对齐的 API,你可以打开终端直接通过 API 来测试。我框出来的部分就是该模型 API 在 Sealos 集群的内网地址,你可以点击它直接复制。

为了更直观地使用,我们可以选择再部署一个 WebUI,Lobe Chat、ChatGPT Next Web 这些都可以使用,本文以 Lobe Chat 为例,直接在浏览器打开以下链接:

需要填写三个变量的值,如下图所示:

  • OPENAI_PROXY_URL 的值就是我们刚刚复制的内网 API 接口地址,记得要在末尾加上 /v1
  • OPENAI_MODEL_LIST 的值是 +Llama3-8B-Chinese-Chat.q4_k_m.GGUF
  • OPENAI_API_KEY 的值随便瞎写一个就行。

然后点击右上角的「部署应用」,部署完成后,直接点击应用的「详情」进入该应用的详情页面,等待实例状态变成 running 之后,点击外网地址即可打开 Lobe Chat 的可视化界面。

进来之后,先点击顶部的 gpt-3.5-turbo:

在弹出来的下拉框中点击「Llama3-8B-Chinese-Chat.q4_k_m.GGUF」,切换到该模型。

现在就可以和模型愉快地对话了,先来个弱智吧的问题尝尝咸淡:

再来试试 GPT-4 专用测试问题:

数学能力测试:

???

这个应用模板默认只给了 8核 CPU,而且都没跑满,效果肯定还是不如 GPU 的。有条件的同学可以直接用 GPU 部署 70B 的模型。

相关文章
|
人工智能 自然语言处理 物联网
中文LLaMA模型和指令精调的Alpaca大模型:中文数据进行二次预训练,进一步提升了中文基础语义理解能力
中文LLaMA模型和指令精调的Alpaca大模型:中文数据进行二次预训练,进一步提升了中文基础语义理解能力
中文LLaMA模型和指令精调的Alpaca大模型:中文数据进行二次预训练,进一步提升了中文基础语义理解能力
|
3月前
|
人工智能 自然语言处理 算法
魔搭上新啦! 智源千万级指令微调数据集Infinity-Instruct,Llama3.1仅微调即可接近GPT-4
智源研究院在今年6月推出了千万级指令微调数据集Infinity Instruct。Infinity Instruct在 Huggingface等平台发布后,快速到达了Huggingface Dataset的Trending第一
魔搭上新啦! 智源千万级指令微调数据集Infinity-Instruct,Llama3.1仅微调即可接近GPT-4
|
2月前
|
开发工具 git
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
80 0
|
4月前
|
数据采集 人工智能 自然语言处理
Llama 3.1发布:4050亿参数模型,迄今为止最强的开源大模型之一
Meta宣布发布Llama 3.1 405B,这一目前公开的最大且最先进的语言模型,标志着开源语言模型新时代的到来。Llama 3.1 405B不仅在常识理解、数学、工具使用及多语言翻译等功能上媲美顶尖AI模型,其8B和70B版本亦支持多种语言,拥有长达128K的上下文理解能力。该模型在150多个多语言基准测试中表现出色,并经过广泛的人工评估。为克服大规模训练挑战,Meta采用标准解码器架构和迭代后训练策略,大幅提升了数据质量和模型性能。此外,Llama 3.1通过监督微调、拒绝采样和直接偏好优化等手段提高了模型对指令的响应性和安全性。
96 2
|
4月前
|
自然语言处理 资源调度 机器人
10G显存,使用Unsloth微调Qwen2并使用Ollama推理
本文主要使用Unsloth基于Qwen2基础模型微调对话机器人以及在Ollama上运行。
|
机器人 测试技术 开发者
ModelScope中文模型测评
Modelscope可以帮助研究人员和开发者对模型进行性能分析等。本次我体验了知识常识,人类价值观和写作创作相关这三个对话类型场景,下面是我对测试模型的分析与看法
335 1
 ModelScope中文模型测评
|
自然语言处理 Python
中文大模型评测
中文大模型评测
812 3
|
7月前
|
机器学习/深度学习 存储
百川智能发布超千亿大模型Baichuan3,中文评测超GPT-4
1月29日午间消息,百川智能宣布发布超千亿参数的大语言模型Baichuan 3。在 CMMLU、GAOKAO 和 AGI-Eval 等评测中,Baichuan 3 号称在中文任务上超越了 GPT-4。
|
自然语言处理
中文大模型体验
中文大模型体验
222 1
|
自然语言处理 测试技术
ModelScope中文竞技场模型测试
ModelScope中文竞技场是一个创新性的应用测试平台,专注于评估和提升自然语言处理(NLP)模型在中文语境下的性能。该平台为研究人员、工程师和数据科学家提供了一个丰富多样的测试环境,用于测试和比较不同NLP模型在各种任务上的表现。这也使的我们了解它们在不同任务上的相对表现,选择更适合使用场景的回答。下面👇就是基于该应用测试结果(使用到的对话类型为:代码相关,人类价值观,NLP 专业领域):
190 2