m基于Yolov2深度学习网络的智能零售柜商品识别系统matlab仿真,带GUI界面

简介: MATLAB 2022a中展示了YOLOv2目标检测算法的仿真结果,包括多张检测图像。YOLOv2是实时检测算法,由卷积层和全连接层构成,输出张量包含边界框坐标和类别概率。损失函数由三部分组成。程序使用75%的数据进行训练,剩余25%作为测试集。通过ResNet-50预训练模型构建YOLOv2网络,并用SGDM优化器进行训练。训练完成后,保存模型为`model.mat`。

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg

2.算法涉及理论知识概要
YOLO(You Only Look Once)是一种实时的目标检测算法,YOLOv2则是其改进版本,由Joseph Redmon和Ali Farhadi于2016年提出。YOLOv2采用了端到端的方式直接从整幅图像预测边界框和类别概率,极大地提高了检测速度。

   YOLOv2网络由一系列卷积层组成,最后连接到全连接层以生成预测结果。其输出张量尺寸为S×S×(B×(5+C)),其中:

S是输出网格的尺寸,一般设置为S=7;
B是每个网格单元预测的边界框数量(默认为2);
55代表每个边界框的坐标信息(x,y,w,h,confidence),其中(x,y)是边界框的中心相对于网格单元的位置比例,w,h是边界框的宽度和高度相对于整幅图像的比例,confidence是包含物体且预测框正确的置信度;
C是待检测物品的类别数。
损失函数由位置损失、置信度损失和类别概率损失三部分组成:

8.png
9.png

  在智能零售柜场景中,YOLOv2首先通过训练集学习各类商品的特征。当部署在零售柜时,摄像头拍摄的实时画面会被送入YOLOv2网络,网络将整幅图像划分为多个网格,每个网格负责预测一定数量的边界框及其所属商品的类别概率。网络输出后,通过非极大值抑制(Non-Maximum Suppression, NMS)算法剔除非最大概率的边界框,保留最具代表性的商品框。最终,系统根据框内商品的类别信息和计数规则完成商品识别与数量统计。

3.MATLAB核心程序
```sidx = randperm(size(FACES,1));% 打乱数据集索引
idx = floor(0.75 * length(sidx));% 将75%的数据用作训练集
train_data = FACES(sidx(1:idx),:);% 选取训练集
test_data = FACES(sidx(idx+1:end),:);% 选取测试集
% 图像大小
image_size = [224 224 3];
num_classes = size(FACES,2)-1;% 目标类别数量
anchor_boxes = [% 预定义的锚框大小
43 59
18 22
23 29
84 109
];
% 加载预训练的 ResNet-50 模型
load mat\Resnet50.mat

% 用于目标检测的特征层
featureLayer = 'activation_40_relu';
% 构建 YOLOv2 网络
lgraph = yolov2Layers(image_size,num_classes,anchor_boxes,Initial_nn,featureLayer);

options = trainingOptions('sgdm', ...
'MiniBatchSize', 8, ....
'InitialLearnRate',1e-4, ...
'MaxEpochs',200,...
'CheckpointPath', Folder, ...
'Shuffle','every-epoch', ...
'ExecutionEnvironment', 'gpu');% 设置训练选项
% 训练 YOLOv2 目标检测器
[detector,info] = trainYOLOv2ObjectDetector(train_data,lgraph,options);

save model.mat detector
```

相关文章
|
10天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
26 8
|
23天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
1月前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
45 3
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
215 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
136 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
96 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)

热门文章

最新文章