数据分析web可视化神器---streamlit框架,无需懂前端也能搭建出精美的web网站页面

简介: 数据分析web可视化神器---streamlit框架,无需懂前端也能搭建出精美的web网站页面

✨✨ 欢迎大家来到景天科技苑✨✨

🎈🎈 养成好习惯,先赞后看哦~🎈🎈

Streamlit

什么是streamlit

Streamlit是一个免费的开源框架,用于快速构建和共享漂亮的数据科学Web应用程序。它是一个基于Python的库,专为机器学习工程师设计。

数据分析工程师不是网络开发人员,他们对花几周时间学习使用这些框架来构建网络应用程序不感兴趣。

相反,他们需要一个更容易学习和使用的工具,只要它可以显示数据并收集分析/建模所需的参数。Streamlit允许您仅用几行代码创建一个外观惊艳的应用程序。

数据科学家为何要使用Streamlit?

Streamlit最大的好处是,您甚至不需要了解Web开发的基础知识就可以开始或创建您的第一个Web应用程序。

因此,如果你是一个对数据科学感兴趣的人,你想轻松、快速地部署你的模型,并且只需要几行代码,Streamlit是一个很好的选择。

优势:

  • 不需要具备前端知识即可应用streamlit。
  • 学习成本极低
  • 你不需要花费几天或几个月的时间来创建一个Web应用,你可以在几个小时甚至几分钟内创建一个非常漂亮的机器学习或数据科学应用。
  • 它兼容大多数Python库
  • 例如panda、matplotlib、seaborn、plotly、Keras、PyTorch等。

环境安装

pip install streamlit

#测试安装是否正常:

streamlit hello
 

随便输入个邮箱,即可显示出访问url

程序运行

streamlit run xxx.py

具体操作

1.write()函数

可以通过该函数向看板上输出显示指定内容,每一个write函数,单独占一行显示

import pandas as pd
import streamlit as st

st.write("1. write()函数基本操作")
#展示表格

st.write(pd.DataFrame({
    '第一列': [1,2,3,4,5],
    '第二列': [6,7,8,9,10]}
))

运行:

在浏览器查看:

直接出图表,是不是很方便!!!

2.滑块组件slider

“slider"的中文意思是"滑块”。它是一种用户界面元素,通常用于选择一个数值范围或从给定选项中选择一个值。

滑块的外观通常是一个可拖动的滑块,用户可以通过移动滑块来选择所需的值。

滑块可以在许多应用程序和网页中使用,例如调整音量、选择年龄范围或设置某个参数的值。

import streamlit as st

st.write("st.slider()滑块")
#slider参数为滑块自定义名称,返回值为滑动到的数值
num = st.slider("num")
st.write(num, "squred is", num*num)

运行程序,浏览器展示

3.文本框操作text_input

页面显示输入文本框,看下参数

import streamlit as st

st.write("文本框操作")
#文本框输入,回车结束
st.text_input("your name", key="name")
st.text_input("your age", key="age")

# 显示输入的值,根据key键来获取
st.write(st.session_state.name,st.session_state.age)

运行程序,浏览器展示

4.多选框checkbox

import streamlit as st
import pandas as pd
import numpy as np

st.write("checkbox()多选框")
# 点击checkbox后返回True,未点击为False
ex1 = st.checkbox('显示/不显示 表格')
if ex1:
    df = pd.DataFrame(
        np.random.randn(20, 3),
        columns=['a', 'b', 'c']
    )
    st.write(df)

ex2 = st.checkbox('显示/不显示 滑块')
if ex2:
    x = st.slider('x')
    st.write(x)

运行程序,浏览器展示

5.下拉框selectbox

import streamlit as st

#返回值为选中的内容信息
option = st.selectbox(
    label='请选择省份信息:',
    options=['河北','山东','河南','吉林']
)

st.write("您选择的是: ", option)

6.侧边栏sidebar

st.sidebar.后面跟侧边栏显示的内容组件

import streamlit as st

#侧边栏下拉框
add_selectbox = st.sidebar.selectbox(
    label="通讯方式选项",
    options=('微信','QQ','手机','邮件')
)
#获取下拉选项
st.write("下拉选项: ", add_selectbox)

#侧边栏滑块
add_slider = st.sidebar.slider(
    label="选择一个范围的值",
    min_value=0.0, max_value=100.0, value=(25.0, 75.0)
)
#获取滑块的值
st.write("值的范围: ", add_slider)

7.单选按钮radio

import streamlit as st

# st.columns参数表示列数,表示要在页面展示的列数
left_column, right_column = st.columns(2)  #显示两列布局容器
# 左边列设置,使用with
with left_column:
    # 返回值为选中的选项值
    chosen = st.radio(
        label='电脑品牌',
        options=('苹果', '华为', '小米')
    )
    st.write(f'你选择的品牌是: {chosen}')

# 右边列设置
with right_column:
    # 返回值为选中的选项值
    chosen = st.radio(
        label='手机品牌',
        options=('苹果', '华为', '小米')
    )
    st.write(f'你选择的品牌是: {chosen}')

8.进度条progress

import streamlit as st
import time
st.write("模拟长时间的计算...")

# 创建一个动态显示数据的容器,用于动态显示进度条的进度数值
value = st.empty()
#创建进度条,进度条初始值为0
bar = st.progress(0)
for i in range(100):
    #这是动态显示的数值
    value.text(f'Iteration {i+1}')
    # 更新进度条
    bar.progress(i+1)
    time.sleep(0.1)
st.write('运行结束!')

9.文件上传下载

(1)文件上传:

st.file_uploader()

看下参数

参数介绍

上传penguins.csv文件,然后选择不同的两个企鹅特征,用散点图观察其分布形式。

看下源文件

import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
st.write('上传penguins.csv文件,然后选择不同的两个企鹅特征,用散点图观察其分布形式。')

#创建文件上传组件,如果上传失败则返回None,上传下载都可以搞
upload_file = st.file_uploader(
    label = "上传数据集CSV文件" #自定义文件上传提示信息
)

#判断上传文件是否成功
if upload_file:
    df = pd.read_csv(upload_file)
    st.write('显示前5行数据:',df.head(5))
    st.success("上传文件成功!")
else:
    st.stop() # 退出

#制作下拉框,用于选择企鹅的不同特征
x_var = st.selectbox(
    label = "请选择:",
    options = ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'body_mass_g']
)
#制作下拉框,用于选择企鹅的不同特征
y_var = st.selectbox(
    label = "请选择",
    options = ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'body_mass_g']
)


fig, ax = plt.subplots() #返回值:画布、画布子图例
#绘制散点图

ax = sns.scatterplot(data=df,
                     x=x_var,
                     y=y_var,
                     hue='species'
                     )
plt.xlabel(x_var)
plt.ylabel(y_var)
plt.title('Penguins Scatter Plot')

#显示画布
st.pyplot(fig)

可以选择企鹅的不同特征,来绘制图

默认上传单个文件最大为200M,我们可以做修改

要在运行程序当前目录下,创建个.streamlit目录,里面创建个config.toml文件

内容如下,设置上传文件大小限制,单位是M

[server]
maxUploadSize = 4500

案例:保存上传的文件到本地

import streamlit as st


#创建文件上传组件,如果上传失败则返回None
upload_file = st.file_uploader(
    label = "上传图片" #自定义文件上传提示信息,

)


#判断上传文件是否成功
if upload_file:
    with open('上传图片.png','wb') as file:
        #注意,保存文件要保存上传对象.getvalue()
        file.write(upload_file.getvalue())

    st.success("上传文件成功!")
else:
    st.stop() # 退出

上传成功

(2)文件下载:

st.download_button()

看下参数

参数介绍

案例:

import streamlit as st

st.write('下载playwright.png文件')

with open('playwright.png','rb') as file:
    st.download_button(
        label='download_button',
        data=file,
        file_name="playwright.png",
        mime='image/png'
    )

运行程序,浏览器查看,点击下载按钮,下载完成


相关文章
|
3月前
|
数据采集 数据可视化 数据挖掘
基于Python的数据分析与可视化实战
本文将引导读者通过Python进行数据分析和可视化,从基础的数据操作到高级的数据可视化技巧。我们将使用Pandas库处理数据,并利用Matplotlib和Seaborn库创建直观的图表。文章不仅提供代码示例,还将解释每个步骤的重要性和目的,帮助读者理解背后的逻辑。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供有价值的见解和技能。
278 0
|
2月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
104 5
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
3月前
|
Web App开发 前端开发 JavaScript
Web开发者必收藏的10个实用网站,你还没收藏吗?
将这些网站收藏起来,定期访问,使它们成为您日常工作的一部分,助您在快速发展的 Web 开发领域保持领先。
161 2
Web开发者必收藏的10个实用网站,你还没收藏吗?
|
2月前
|
人工智能 搜索推荐 PHP
PHP在Web开发中的璀璨星辰:构建动态网站的幕后英雄###
【10月更文挑战第25天】 本文将带您穿越至PHP的宇宙,揭示其作为Web开发常青树的奥秘。通过生动实例与深入解析,展现PHP如何以简便、高效、灵活的姿态,赋能开发者打造动态交互式网站,同时不忘探讨其在新时代技术浪潮中面临的挑战与机遇,激发对技术创新与应用的无限思考。 ###
42 1
|
2月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
3月前
|
存储 数据挖掘 数据处理
Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析
【10月更文挑战第8天】随着数据湖技术的发展,越来越多企业开始利用这一技术优化数据处理。Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析。本文分享了巴别时代在构建基于 Paimon 的 Streaming Lakehouse 的探索和实践经验,包括示例代码和实际应用中的优势与挑战。
148 1
|
3月前
|
编解码 前端开发 JavaScript
使用 CSS 打印样式为 Web 页面设置专业的打印机效果
使用 CSS 打印样式为 Web 页面设置专业的打印机效果
109 2
WK
|
2月前
|
安全 Java 编译器
C++和Java哪个更适合开发web网站
在Web开发领域,C++和Java各具优势。C++以其高性能、低级控制和跨平台性著称,适用于需要高吞吐量和低延迟的场景,如实时交易系统和在线游戏服务器。Java则凭借其跨平台性、丰富的生态系统和强大的安全性,广泛应用于企业级Web开发,如企业管理系统和电子商务平台。选择时需根据项目需求和技术储备综合考虑。
WK
142 0
|
3月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
453 0

热门文章

最新文章