【视频】R语言机器学习高维数据应用:Lasso回归和交叉验证预测房屋市场租金价格

简介: 【视频】R语言机器学习高维数据应用:Lasso回归和交叉验证预测房屋市场租金价格

全文链接:http://tecdat.cn/?p=32646

分析师:Junjun Li


在这篇文章中,我们将着重探讨高维数据下的机器学习应用,以房屋市场租金价格预测为例


在实际生活中,房屋租金作为一个重要的经济指标,被广泛应用于城市规划、财务投资等方面的决策中。然而,如何准确地预测房屋租金价格却一直是一个具有挑战性的问题。

本文将介绍如何使用Lasso回归和交叉验证方法来解决高维数据下的房屋市场租金价格预测问题,并详细阐述R语言在此过程中的应用技巧和实现方法。


背景


Goal: 利用主体物业和租户的各种特征来预测房屋市场租金价格

Data: 在Inter-University Consortium for Politicaland Social Research(ICPSR)数据库中找到的2007年美国住房调查(全国微观数据)有65,000个观测值和超过500个变量

Limitation: 某些特征的不可观测

有部分特征在超过80%的观测值中没有数据的,导致没有办法配合预测模型进行变量的筛选

Model used:

Regularization: 10.fold Lasso & AICc Lasso

适合于大量数据处理(高维度多变量)

image.png

数据清理


使用R语言处理无法观测到的变量︰

  1. 观测codebook去除无关的变量
  2. 选择去除50%以上失踪的变量(可以反复对比去除了不同变量后的模型)
  3. 对于剩下的变量去除含有NA的观测值
  4. visualize部分重要变量是否合理

image.png

观测数据


大多数租金集中在一千美元左右,其平均租金(由红线标示)为1025美元(直方图呈现出略微右偏的近似正态分布)。

观测一些关键特征的信息,这些特征有助于预测公平市场租金,包括卧室数量、楼层数量、地块面积和主体单位的平方英尺面积。

image.png

点击标题查阅往期内容


贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据


01

02

03

04


模型分析


Regularization - Lasso Model

image.png

使用K-Fold cross validation确定最佳的lamda值:

数据被分成K个相等的部分,除了第k个折叠之外的所有数据都用于训练模型,第k个折叠用于测试模型,记录离样本外的偏差。

重复此过程,以至每个折叠都有机会成为测试集。导致离样本外偏差最小的lamda是最优lamda值,在案例中我采用K-10:

最终计算最小deviance中的样本内R^2与通过10 Fold cross validation计算出的样本外R^2。

image.png

左侧是套索正则化路径的绘图。我们可以看到随着lamda的增加,系数逐渐趋近于零。

右侧的图表显示了10Fold crossvalidation的离样本外偏差误差估计。最优lamda由最左边的垂直虚线表示。图表上的最低点实际上位于图表的最左侧,lamda的值最小。

与典型的图表不同,这个图表不是呈“u形。

在这种情况下,这意味着选择了最复杂的模型作为最优解。

image.png

模型分析


右图的值表示非零系数及其值,取重要变量进行合理性分析: 卧室数量:每增加—个卧室,月租金价格天约增加143.51美元,其他变量和特征保持不变。这个值是合理的,因为2个卧室的单位的租金价格很可能大于1个卧室的单位的租金价格。楼层数的系数是负数:对于每增加个楼层的单位或物业,月租金价格将减少约10.55美元,其他变量和系数保持不变。这个负系数是合理的,因为楼层数较多的物业更有可能是紧凑型的。

image.png

模型分析


与10-Fold cross validation相比,我还使用了一个计算上较为简便的替代方法是Akaike Information Criterion(AICc)。

在高维数据中,AICc倾向于产生过于复杂的模型,导致过拟合。然而,AICc得到的非零系数及其值与之前相同。

在右图中,我们展示了在我们的情况下,由AIC 、 AICc和10-Fold cross validation选择的最优lamda是相同的,即黑色、橙色和蓝色虚线重叠的部分.

image.png

总结


在执行Lasso Regularization后,我们看到模型从数据集中选择了186个变量中的76个变量。但有一些重要变量地没有包含在模型中,例如主体物业的建造年份和浴室数量,因为其中缺失了大量的观测值。

因为数据缺失较多所以模型只能用作客观预测,不能很好的反应各个变量之间的相关性, 在数据清理方面,选择去除含50%及以上数据缺失的变量也是一个需要权衡的方向,因为这个门槛选择太低又可能导致数据少无法正确反应变量之间的关系作用,而门槛太高就会出现没办法选择到一些比较重要的变量。

此模型不具备自适应性,所以需要新数据的更新支持才能更好的保证其预测的准确性。

image.png

相关文章
|
1月前
|
机器学习/深度学习 存储 算法
决策树和随机森林在机器学习中的应用
在机器学习领域,决策树(Decision Tree)和随机森林(Random Forest)是两种非常流行且强大的分类和回归算法。它们通过模拟人类决策过程,将复杂的数据集分割成易于理解和处理的子集,从而实现对新数据的准确预测。
68 10
|
11天前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习在医疗诊断中的应用
【9月更文挑战第32天】随着科技的不断发展,人工智能和机器学习已经在许多领域得到了广泛应用。在医疗领域,它们正在改变着医生和患者的生活。通过分析大量的医疗数据,AI可以帮助医生更准确地诊断疾病,预测患者的病情发展,并提供个性化的治疗方案。本文将探讨人工智能和机器学习在医疗诊断中的具体应用,包括图像识别、自然语言处理和预测分析等方面。我们还将讨论AI技术面临的挑战和未来的发展趋势。
|
8天前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
21 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
12天前
|
机器学习/深度学习 自然语言处理 JavaScript
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
30 2
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
|
12天前
|
机器学习/深度学习 数据采集 自然语言处理
【机器学习】大模型驱动下的医疗诊断应用
摘要: 随着科技的不断发展,机器学习在医疗领域的应用日益广泛。特别是在大模型的驱动下,机器学习为医疗诊断带来了革命性的变化。本文详细探讨了机器学习在医疗诊断中的应用,包括疾病预测、图像识别、基因分析等方面,并结合实际案例进行分析。同时,还展示了部分相关的代码示例,以更好地理解其工作原理。
17 3
【机器学习】大模型驱动下的医疗诊断应用
|
6天前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
14 2
|
6天前
|
机器学习/深度学习 存储 算法
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
16 1
|
6天前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
24 2
|
7天前
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
15 0
机器学习中空间和时间自相关的分析:从理论基础到实践应用