【视频】支持向量机算法原理和Python用户流失数据挖掘SVM实例(上)

简介: 【视频】支持向量机算法原理和Python用户流失数据挖掘SVM实例

全文链接:http://tecdat.cn/?p=32604

分析师:Bailey Zheng和Lijie Zhang


即使是同一种植物,由于生长的地理环境的不同,它们的特征会有所差异。例如鸢尾花,可分为山鸢尾、杂色鸢尾、维吉尼亚鸢尾点击文末“阅读原文”获取完整代码数据


假设此时您得到了一朵鸢尾花,如何判断它属于哪一类呢?

image.png

支持向量机算法原理


·其主要思想是找到空间中的一个能够将所有数据样本划开的超平面,并且使得样本集中所有数据到这个超平面的距离最短。

·支持向量机可以分为线性和非线性两大类。

image.png

支持向量机的标准:


image.png

非线性支持向量机


·高斯核:尺度参数gamma

·多项式核:阶数degree

(线性支持向量机:正则化参数C) 调参

image.png

数据指标:


SL花尊长度(cm) ,SW花芎宽度(cm)PL花辨长度(cm),PW花瓣宽度(cm)鸢尾花种类: Iris Setosa;

Iris Versicolour;Iris Virginica

数据数量:共150个数据点


使用多项式核函数的非线性支持向量机训练分类模型

image.png

点击标题查阅往期内容


数据分享|WEKA信贷违约预测报告:用决策树、随机森林、支持向量机SVM、朴素贝叶斯、逻辑回归


01

02

03

04


Python用户流失数据挖掘:建立支持向量机、逻辑回归、XGboost、随机森林、决策树、朴素贝叶斯模型和Kmeans用户画像


在今天产品高度同质化的品牌营销阶段,企业与企业之间的竞争集中地体现在对客户的争夺上

“用户就是上帝”促使众多的企业不惜代价去争夺尽可能多的客户。但是企业在不惜代价发展新用户的过程中,往往会忽视或无暇顾及已有客户的流失情况,结果就导致出现这样一种窘况:一边是新客户在源源不断地增加,而另一方面是辛辛苦苦找来的客户却在悄然无声地流失。因此对老用户的流失进行数据分析从而挖掘出重要信息帮助企业决策者采取措施来减少用户流失的事情至关重要,迫在眉睫。

image.png

1.2 目的:

深入了解用户画像及行为偏好,挖掘出影响用户流失的关键因素,并通过算法预测客户访问的转化结果,从而更好地完善产品设计、提升用户体验。


1.3 数据说明:

此次数据是携程用户一周的访问数据,为保护客户隐私,已经将数据经过了脱敏,和实际商品的订单量、浏览量、转化率等有一些差距,不影响问题的可解性。


2 读取数据


# 显示全部特征
df.head()

image.png

3 切分数据


# 划分训练集,测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=666)

3.1 理解数据

可以看到变量比较的多,先进行分类,除去目标变量label,此数据集的字段可以分成三个类别:订单相关指标、客户行为相关指标、酒店相关指标。

image.png

image.png

4 特征工程


# 用训练集进行数据探索
train = pd.concat([X_train,y_train],axis=1)


4.1 数据预处理

image.png

image.png

4.1.1 删除不必要的列

X_train.pop("sampleid")
X_test.pop("sampleid")
train.pop("sampleid")

4.1.2 数据类型转换

字符串类型的特征需要处理成数值型才能建模,将arrival和d相减得到"提前预定的天数",作为新的特征

# 增加列
# 将两个日期变量由字符串转换为日期格式类型
train["arrial"] = pd.to_datimetain["arrval"])
X_tst["arival"] = d.to_daetime(X_est["arival"])
# 生成提前预定时间列(衍生变量)
X_trin["day_adanced"] = (X_rain["arival"]-Xtrain["d"]).dt.days
## 删除列
X_tran.dro(columns="d","arrivl"],inpace=True)

4.1.3 缺失值的变量生成一个指示哑变量

zsl = tain.isnll().sum()[tain.isnll(.sum()!=0].inex

4.1.4 根据业务经验填补空缺值

ordernum_oneyear 用户年订单数为0 ,lasthtlordergap 11%用600000填充 88%用600000填充 一年内距离上次下单时长,ordercanncelednum 用0填充 用户一年内取消订单数,ordercanceledprecent 用0t填充 用户一年内取消订

单率 242114 242114 -为空 有2种情况 1:新用户未下订单的空-88.42% 214097 2.老用户1年以上未消费的空 增加编码列未下订单新用户和 1年未下订单的老用户

price_sensitive -0 ,中位数填充 价格敏感指数,consuming_capacity -0 中位数填充 消费能力指数 226108 -为空情况 1.从未下过单的新用户214097 2.12011个人为空原因暂不明确

uv_pre -24小时历史浏览次数最多酒店历史uv. cr_pre -0,中位数填充 -24小时历史浏览次数最多酒店历史cr -0,中位数填充 29397 -为空 1.用户当天未登录APP 28633 2.刚上线的新酒店178 586 无uv,cr记录 编码添加 该APP刚上线的新酒店 764 29397

customereval_pre2 用0填充-24小时历史浏览酒店客户评分均值, landhalfhours -24小时内登陆时长 -用0填充28633 -为空:用户当天未登录APP 28633

hotelcr ,hoteluv -中位数填充 797


【视频】支持向量机算法原理和Python用户流失数据挖掘SVM实例(下):https://developer.aliyun.com/article/1496761

相关文章
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
12天前
|
算法 容器
令牌桶算法原理及实现,图文详解
本文介绍令牌桶算法,一种常用的限流策略,通过恒定速率放入令牌,控制高并发场景下的流量,确保系统稳定运行。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
令牌桶算法原理及实现,图文详解
|
22天前
|
负载均衡 算法 应用服务中间件
5大负载均衡算法及原理,图解易懂!
本文详细介绍负载均衡的5大核心算法:轮询、加权轮询、随机、最少连接和源地址散列,帮助你深入理解分布式架构中的关键技术。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
5大负载均衡算法及原理,图解易懂!
|
28天前
|
算法 数据库 索引
HyperLogLog算法的原理是什么
【10月更文挑战第19天】HyperLogLog算法的原理是什么
42 1
|
18天前
|
测试技术 API 数据安全/隐私保护
Python连接到Jira实例、登录、查询、修改和创建bug
通过使用Python和Jira的REST API,可以方便地连接到Jira实例并进行各种操作,包括查询、修改和创建Bug。`jira`库提供了简洁的接口,使得这些操作变得简单易行。无论是自动化测试还是开发工作流的集成,这些方法都可以极大地提高效率和准确性。希望通过本文的介绍,您能够更好地理解和应用这些技术。
62 0
|
1月前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
机器学习/深度学习 Python 计算机视觉
python svm pca实践二
继上一片的内容,这片来·讲一下sklearn来进行简单的人脸识别,这里用的方法是pca和svm 先导入必要的包和数据集 import numpy as np import matplotlib.
2151 0
|
机器学习/深度学习 Python
python svm pca实践(一)
好久没写博客了 这里主要用python的sklearn包,来进行简单的svm的分类和pca的降维 svm是常用的分类器,其核心是在分类的时候找到一个最优的超平面,使得所有的样本与超平面之间的距离达到最小。
2893 0
|
8天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
8天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!

热门文章

最新文章

下一篇
无影云桌面