数据结构奇妙旅程之二叉树初阶

简介: 数据结构奇妙旅程之二叉树初阶

꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱

ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客

本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如需转载还请通知˶⍤⃝˶

个人主页xiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客

系列专栏:xiaoxie的JAVA系列专栏——CSDN博客●'ᴗ'σσணღ*

我的目标:"团团等我💪( ◡̀_◡́ ҂)"

( ⸝⸝⸝›ᴥ‹⸝⸝⸝ )欢迎各位→点赞👍 + 收藏⭐️ + 留言📝+关注(互三必回)!

一.树

1.概念(简单了解即可)

树是一种 非线性 的数据结构,它是由 n n>=0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看

起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的 。它具有以下的特点:

有一个特殊的结点,称为根结点,根结点没有前驱结点

除根结点外,其余结点被分成 M(M > 0) 个互不相交的集合 T1 T2 ...... Tm ,其中每一个集合 Ti (1 <= i <= m) 又是一棵与树类似的子树。

每棵子树的根结点有且只有一个前驱,可以有 0 个或多个后继 。树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

2.树的基本术语

2.1需要重点记忆的

结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为3

树的度 :一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为3

叶子结点或终端结点 :度为 0 的结点称为叶结点; 如上图:E, F, G, H, I, J 等节点为叶结点

双亲结点或父结点 :若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图: A B 的父结点

孩子结点或子结点 :一个结点含有的子树的根结点称为该结点的子结点; 如上图: B A 的孩子结点

根结点 :一棵树中,没有双亲结点的结点;如上图: A

结点的层次 :从根开始定义起,根为第 1 层,根的子结点为第 2 层,以此类推

树的高度或深度 :树中结点的最大层次; 如上图:树的高度为3

2.2简单了解即可

非终端结点或分支结点 :度不为 0 的结点; 如上图:B 、C 、D 等节点为分支结点

兄弟结点 :具有相同父结点的结点互称为兄弟结点; 如上图: B C 是兄弟结点

堂兄弟结点 :双亲在同一层的结点互为堂兄弟;如上图: H I 互为兄弟结点

结点的祖先 :从根到该结点所经分支上的所有结点;如上图: A 是所有结点的祖先

子孙 :以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是 A 的子孙

森林 :由 m m>=0 )棵互不相交的树组成的集合称为森林

3.树的代码表示形式(简单了解)

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法

孩子表示法 孩子双亲表示法 孩子兄弟表示法 等等。我们这里就简单的了解其中最常用的 孩子兄弟表示法

class Node {
int value; // 树中存储的数据
Node firstChild; // 第一个孩子引用
Node nextBrother; // 下一个兄弟引用
}

二.二叉树(重点掌握)

1.概念

一棵二叉树是结点的一个有限集合,该集合:

1. 或者为空

2. 或者是由 一个根节 点加上两棵别称为 左子树 右子树 的二叉树组成。

从上图可以看出:

1. 二叉树不存在度大于 2 的结点

2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:

1.1二叉树的基本形态

1.2两种特殊的二叉树

1. 满二叉树 : 一棵二叉树,如果 每层的结点数都达到最大值,则这棵二叉树就是满二叉树 。也就是说, 如果一棵 二叉树的层数为 K ,且结点总数是 2^k - 1 ,则它就是满二叉树

2. 完全二叉树 : 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K 的,有 n

个结点的二叉树,当且仅当其每一个结点都与深度为 K 的满二叉树中编号从 0 n-1 的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.性质

1. 若规定 根结点的层数为 1 ,则一棵 非空二叉树的第 i 层上最多有 2^(i-1) (i>0) 个结点

2. 若规定只有 根结点的二叉树的深度为 1 ,则 深度为 K 的二叉树的最大结点数是2^k - 1

(k>=0)

3. 对任何一棵二叉树 , 如果其 叶结点个数为 n0, 度为 2 的非叶结点个数为 n2, 则有 n0 n2 1

4. 具有 n 个结点的完全二叉树的深度 k 为 log2(n+1) 上取整

5. 对于具有 n 个结点的完全二叉树 ,如果按照 从上至下从左至右的顺序对所有节点从 0 开始编号 ,则对于 序号为 i 的结点有

i>0 双亲序号: (i-1)/2 i=0 i 为根结点编号 ,无双亲结点

2i+1<n ,左孩子序号: 2i+1 ,否则无左孩子

2i+2<n ,右孩子序号: 2i+2 ,否则无右孩子

3.基本操作

public class BinaryTree {
    static class TreeNode {
        public char val;
        public TreeNode left;
        public TreeNode right;
        public TreeNode(char val) {
            this.val = val;
        }
    }
 
    //以穷举的方式 创建一棵二叉树出来
    public TreeNode createTree() {
        TreeNode A = new TreeNode('A');
        TreeNode B = new TreeNode('B');
        TreeNode C = new TreeNode('C');
        TreeNode D = new TreeNode('D');
        TreeNode E = new TreeNode('E');
        TreeNode F = new TreeNode('F');
        TreeNode G = new TreeNode('G');
        TreeNode H = new TreeNode('H');
        A.left = B;
        A.right = C;
        B.left = D;
        B.right = E;
        C.left = F;
        C.right = G;
        E.right = H;
        return A;
    }
    //前序遍历
   public void preOrder(TreeNode root) {
        if(root == null) {
            return;
        }
        System.out.print(root.val + " ");
        preOrder(root.left);
        preOrder(root.right);
    }
    //中序遍历
    public void inOrder(TreeNode root) {
        if(root == null){
            return;
        }
        inOrder(root.left);
        System.out.print(root.val + " ");
        inOrder(root.right);
    }
    //后序遍历
    public void postOrder(TreeNode root) {
        if(root == null){
            return;
        }
        postOrder(root.left);
        postOrder(root.right);
        System.out.print(root.val + " ");
    }
    // 获取二叉树中节点的个数
    public int size(TreeNode root) {
        if(root == null) {
            return 0;
        }
        return size(root.left)+size(root.right)+1;
    }
    // 获取叶子节点的个数
    public int getLeafNodeCount(TreeNode root) {
        if(root == null) {
            return 0;
        }
        if(root.left == null && root.right == null) {
            return 1;
        }
        return getLeafNodeCount(root.left) + getLeafNodeCount(root.right);
    }
    // 获取第K层节点的个数
    public int getKLevelNodeCount(TreeNode root,int k) {
        if(root == null) {
            return 0;
        }
        if(k == 1) {
            return 1;
        }
        return getKLevelNodeCount(root.left,k-1) + getKLevelNodeCount(root.right,k-1);
    }
    // 获取二叉树的高度
    public int getHeight(TreeNode root) {
      if(root == null) {
          return 0;
      }
      int leftH = getHeight(root.left);
      int rightH = getHeight(root.right);
      return Math.max(leftH,rightH)+1;
    }
    // 检测值为value的元素是否存在
    public boolean find(TreeNode root,char val) {
        if(root == null) {
            return false;
        }
        if(root.val == val) {
            return true;
        }
        return find(root.left, val) || find(root.right, val);
    }
    //层序遍历使用队列来辅助
    //当涉及到层序遍历时,通常情况下使用队列来实现会更为简单和高效
    public void levelOrder(TreeNode root) {
        if(root == null) {
            return;
        }
        Queue<TreeNode> q = new LinkedList<>();
        q.offer(root);
        while (!q.isEmpty()) {
           TreeNode cur = q.poll();
            System.out.print(cur.val + " ");
            if(cur.left != null) {
                q.offer(cur.left);
            }
            if(cur.right != null) {
                q.offer(cur.right);
            }
        }
    }
    // 判断一棵树是不是完全二叉树
    public boolean isCompleteTree(TreeNode root) {
        if (root == null) {
            return true;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        boolean end = false;
        while (!queue.isEmpty()) {
            TreeNode current = queue.poll();
            if (current == null) {
                end = true;
            } else {
                if (end) {
                    return false; // 如果已经遇到空节点,再遇到非空节点,说明不是完全二叉树
                }
                queue.offer(current.left);
                queue.offer(current.right);
            }
        }
        return true;
    }
}

三.说明

以上就是关于二叉树的一些基础问题了,如果你已经对这些比较基础的问题都大概了解,就可以开始尝试做题,你也可以移步到博主的下一篇关于二叉树面试题的文章,帮助你更好的掌握二叉树,感谢你的观看,愿你一天开心愉快


相关文章
|
1月前
|
机器学习/深度学习 存储 算法
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
81 4
|
1月前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
132 8
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
31 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
2月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
35 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
2月前
|
Java
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
31 1
|
2月前
|
算法 Java C语言
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
29 1
|
2月前
|
存储
【数据结构】二叉树链式结构——感受递归的暴力美学
【数据结构】二叉树链式结构——感受递归的暴力美学
|
2月前
|
存储 编译器 C++
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
|
2月前
|
存储 算法 调度
数据结构--二叉树的顺序实现(堆实现)
数据结构--二叉树的顺序实现(堆实现)
|
2月前
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(三)
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解