MaxCompute操作报错合集之spark3.1.1通过resource目录下的conf文件配置,报错如何解决

简介: MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。

问题一:大数据计算MaxCompute查询max-compute的表数据报这个错是怎么回事啊?

大数据计算MaxCompute我用Yarn-cluster模式查询max-compute的表数据报这个错是怎么回事啊?文档搜不到报错原因



参考答案:

使用 Spark 和 Yarn 集群模式时遇到了一个错误。错误的具体原因可能需要进一步分析。

为了解决这个问题,您可以尝试以下步骤:

  1. 检查您的 Spark 版本是否与您的集群兼容。确保您的 Spark 版本与您的 Yarn 集群版本兼容。
  2. 检查您的集群配置,确保您的集群有足够的资源来运行您的 Spark 应用程序。这可能涉及到检查您的 Yarn 集群的内存、CPU 和存储资源。
  3. 检查您的应用程序日志,以获取更多关于错误的详细信息。这可以帮助您确定问题所在,并采取适当的措施解决问题。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/568733



问题二:大数据计算MaxCompute北美切成冬令时了,告警规则服务器对应的时区,是不是也需要你们调一下?

大数据计算MaxCompute北美切成冬令时了,告警规则服务器对应的时区,是不是也需要你们调一下?



参考答案:

https://wx.dingtalk.com/invite-page/weixin.html?bizSource=____source____&corpId=dingd0cf799086f27cb135c2f4657eb6378f&inviterUid=A26F27643C000F2D94460A2FDF52346D&encodeDeptId=6B32040BBEAFAF1DE93FD50C752B256A



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/568730



问题三:大数据计算MaxCompute这个调整哪个啊?

FAILED: Metering data exceed max value. Input: 14.534129GB, Complexity: 4.0, Max Value: 40

大数据计算MaxCompute这个调整哪个啊?



参考答案:

单SQL消费限制。https://help.aliyun.com/zh/maxcompute/product-overview/consumption-control?spm=a2c4g.11186623.0.0.3f606a90nstdO3#section-dt6-yj2-osc



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/568728



问题四:大数据计算MaxCompute按官网上的方法,然后报这个错了?

大数据计算MaxCompute按官网上的方法,spark3.1.1通过resource目录下的conf文件配置,然后报这个错了?



参考答案:

最后hive那个参数去掉试下



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/568725



问题五:大数据计算MaxCompute这个问题怎么解决啊?

大数据计算MaxCompute这个问题怎么解决啊?现在查表删表就报这个错



参考答案:

这个报错跟SQL的版本有关系。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/568724

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
8月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
431 0
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
1056 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
11月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
579 79
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
621 2
|
分布式计算 Java MaxCompute
ODPS MR节点跑graph连通分量计算代码报错java heap space如何解决
任务启动命令:jar -resources odps-graph-connect-family-2.0-SNAPSHOT.jar -classpath ./odps-graph-connect-family-2.0-SNAPSHOT.jar ConnectFamily 若是设置参数该如何设置
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
313 0
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
294 0
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
350 0
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
614 6
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
523 1

热门文章

最新文章

相关产品

  • 云原生大数据计算服务 MaxCompute