【技术解析 | 实践】Havenask问题排查

简介: 本次分享内容为Havenask的问题排查,由下面4个部分组成(Hape运维脚本问题、集群相关问题、表相关问题、数据写入与查询问题),希望可以帮助大家更好了解和使用Havenask。

一、架构模式

在介绍具体问题之前,先回顾前面的知识。Havenask主要有两种架构模式,即读写分离模式和读写统一模式。读写分离与读写统一相比,主要在于多了独立的索引。

image.png image.png


二、Hape运维脚本问题

构建服务叫build serviceHavenask主要由下面几个部分组成:

  • Hape运行脚本
  • 在线系统
  • 索引构建系统Build Service
  • Swift消息中间件
  • 还有其他依赖的一些基础的组件,比如zkhdfs等。


Havenask的所有操作都是通过Hape脚本来实现的,它在脚本执行过程中可能会出现命令执行失败的情况。在解决这类问题时,我们首先通过Hape脚本提供的validate的命令验证配置是否,如果正确,再在执行的命令后面加-v的参数(hape start havenask –v),打印命令执行过程中的详细的信息。另外,Hape脚本是使用Python编写的,我们可以直接修改这个脚本,进行pdb的跟踪。


三、集群相关问题

集群相关的问题较为复杂,它主要包括在线集群的问题、BS集群的问题、Swift集群的问题和一些依赖的基础组件的问题。

  • 在线集群的问题主要表现为在线集群节点启动异常、查询异常(主要包括查询耗时变大或查询报错)、表加载异常等。
  • BS集群的问题主要包括BS结集群节点启动异常、数据处理延迟、索引构建异常等。
  • Swift集群的问题主要包括Swift进群节点启动异常、Swift数据处理延迟等。
  • 基础组件的问题主要包括ZK的问题和hdfs的问题,ZK的问题主要包括上面各个集群的节点启动异常,Hdfs的问题可能会导致索引数据、实时数据的读写异常等。


在排查这些问题时,我们首先要确定出现问题的部分,找到对齐的部分后,主要通过排查对应的日志确定具体问题的原因。如在线集群出现问题后,可查看在线Master的日志,在在Master日志中查看是否有异常的节点。另外,如果已经确定了异常节点,就可以查看对应异常节点上的日志。

 

三、表相关问题

表相关的问题主要包括表创建失败,或是表创建成功但未生效,或是表全量失败,或时表索引构建过慢等方面。

  • 表创建失败,是指在通过HAPE脚本创建表时报错,我们就可以直接在Hape执行命令过程中加一个-v参数,排查具体报错的原因。
  • 表创建成功但未生效,我们可以到对应的在线集群的Master节点中查看对应的日志。
  • 表全量失败和表索引构建过慢主要是由索引构建服务异常(如配置不合理等)导致的,我们主要排查build Service日志数据写入的问题,主要包括数据写入后一直未生效,无法在线查询,或是查询得到的结果与写入的原数据不一致。

 

四、数据写入与查询问题

  • 排查这类问题,首先要确保写入的数据无误,其格式是Havenask支持的正确格式。其次,要确定表是全量表或是直写表,因为全量表和直写表对应的整体数据生效链路不同。
  • 若是全量表,在数据写入时应先将数据写入Swift,然后处理BS process节点,重新发送到一个Swift中转,在线的search节点直接从Swift上面去获取处理后的数据,然后直接在内存中构建。若是直写表,数据直接发到search,直接构建成索引,然后search把数据写入Swift,继而其他的数据节点同步这个数据,构建成索引。
  • 总之,全量表和直写表的数据生效链路不同。在确定属于何种表之后,根据首次推送到的节点开始逐步排查。对于一个全量表,数据推送后一直未生效,可以排查是否所有消息中间件都有数据延迟,是否数据处理节点有延迟,是否由于设置节点内存已满导致索引构建失败。这样,我们基本可以确定数据未生效的原因。
  • 查询耗时过大或是查询报错主要是由于在线集群异常或某些配置不合理或扫描的数据节点数据量过多导致的。如查询耗时过大,可以首先确定query,即是否是由于扫描数据量大导致的,如果扫描数据合理,则要检查在线集群的资源是否有瓶颈,这里的资源主要是指CPU资源和内存资源。如果第一次查询较慢,再次查询可能会相对较快,之后,原因是内存资源可能存在瓶颈,或是待查询的数据刚开始不在内存中,我们需要将它提前加到内存中,这样查询耗时就会变短。
  • 另外一个资源是CPU资源,只要查看CPU水位即可,CPU过高会导致查询耗时变大。查询报错,主要排查查询的query是否正确,报错时,我们可以通过查询错误的日志或通过在查询语句中添加一些trace,进而查看具体的原因。


除了以上问题外,数据写入与查询问题比较复杂,我们还需要根据具体的case具体分析。


四、结尾

具体Havenask问题排查的视频可以通过链接查看,欢迎各位开发者使用。

视频链接:https://developer.aliyun.com/live/253856?spm=a2c6h.13262185.profile.5.563bee42LdD7By


关注我们:

Havenask 开源官网:https://havenask.net/

Havenask-Github 开源项目地址:https://github.com/alibaba/havenask

阿里云 OpenSearch 官网:https://www.aliyun.com/product/opensearch

钉钉扫码加入 Havenask 开源官方技术交流群:

1715594790746.png

目录
相关文章
|
4月前
|
域名解析 缓存 网络协议
DNS更新后不生效?快速排查攻略
本文介绍了修改DNS后不生效,其主因是DNS传播延迟。TTL值、ISP缓存及服务器位置影响传播速度。提前调小TTL、清除本地缓存、更换公共DNS可加速。通过nslookup、Dig或Myssl工具可检测全球解析状态,确保更新完成。
663 1
|
10月前
|
传感器 人工智能 物联网
穿戴科技新风尚:智能服装设计与技术全解析
穿戴科技新风尚:智能服装设计与技术全解析
828 85
|
10月前
|
人工智能 API 语音技术
HarmonyOS Next~鸿蒙AI功能开发:Core Speech Kit与Core Vision Kit的技术解析与实践
本文深入解析鸿蒙操作系统(HarmonyOS)中的Core Speech Kit与Core Vision Kit,探讨其在AI功能开发中的核心能力与实践方法。Core Speech Kit聚焦语音交互,提供语音识别、合成等功能,支持多场景应用;Core Vision Kit专注视觉处理,涵盖人脸检测、OCR等技术。文章还分析了两者的协同应用及生态发展趋势,展望未来AI技术与鸿蒙系统结合带来的智能交互新阶段。
737 31
|
10月前
|
编解码 监控 网络协议
RTSP协议规范与SmartMediaKit播放器技术解析
RTSP协议是实时流媒体传输的重要规范,大牛直播SDK的rtsp播放器基于此构建,具备跨平台支持、超低延迟(100-300ms)、多实例播放、高效资源利用、音视频同步等优势。它广泛应用于安防监控、远程教学等领域,提供实时录像、快照等功能,优化网络传输与解码效率,并通过事件回调机制保障稳定性。作为高性能解决方案,它推动了实时流媒体技术的发展。
569 5
|
10月前
|
数据采集 机器学习/深度学习 存储
可穿戴设备如何重塑医疗健康:技术解析与应用实战
可穿戴设备如何重塑医疗健康:技术解析与应用实战
410 4
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术如何重塑客服系统?解析合力亿捷AI智能客服系统实践案例
本文探讨了人工智能技术在客服系统中的应用,涵盖技术架构、关键技术和优化策略。通过感知层、认知层、决策层和执行层的协同工作,结合自然语言处理、知识库构建和多模态交互技术,合力亿捷客服系统实现了智能化服务。文章还提出了用户体验优化、服务质量提升和系统性能改进的方法,并展望了未来发展方向,强调其在客户服务领域的核心价值与潜力。
661 6
|
10月前
|
监控 负载均衡 安全
静态IP代理与动态IP代理:提升速度与保障隐私的技术解析
本文探讨了静态IP代理和动态IP代理的特性和应用场景。静态IP代理通过高质量服务提供商、网络设置优化、定期更换IP与负载均衡及性能监控提升网络访问速度;动态IP代理则通过隐藏真实IP、增强安全性、绕过封锁和提供独立IP保障用户隐私。结合实际案例与代码示例,展示了两者在不同场景下的优势,帮助用户根据需求选择合适的代理服务以实现高效、安全的网络访问。
366 1
|
10月前
|
机器学习/深度学习 数据采集 自然语言处理
基于Python的情感分析与情绪识别技术深度解析
本文探讨了基于Python的情感分析与情绪识别技术,涵盖基础概念、实现方法及工业应用。文中区分了情感分析与情绪识别的核心差异,阐述了从词典法到深度学习的技术演进,并通过具体代码展示了Transformers架构在细粒度情感分析中的应用,以及多模态情绪识别框架的设计。此外,还介绍了电商评论分析系统的构建与优化策略,包括领域自适应训练和集成学习等方法。未来,随着深度学习和多模态数据的发展,该技术将更加智能与精准。
674 1
|
10月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
10月前
|
缓存 算法 Oracle
深度干货 | 如何兼顾性能与可靠性?一文解析YashanDB主备高可用技术
数据库高可用(High Availability,HA)是指在系统遇到故障或异常情况时,能够自动快速地恢复并保持服务可用性的能力。如果数据库只有一个实例,该实例所在的服务器一旦发生故障,那就很难在短时间内恢复服务。长时间的服务中断会造成很大的损失,因此数据库高可用一般通过多实例副本冗余实现,如果一个实例发生故障,则可以将业务转移到另一个实例,快速恢复服务。

推荐镜像

更多
  • DNS