数据分享|R语言关联规则挖掘apriori算法挖掘评估汽车性能数据

简介: 数据分享|R语言关联规则挖掘apriori算法挖掘评估汽车性能数据

全文链接:http://tecdat.cn/?p=32092


我们一般把一件事情发生,对另一件事情也会产生影响的关系叫做关联。而关联分析就是在大量数据中发现项集之间有趣的关联和相关联系(形如“由于某些事件的发生而引起另外一些事件的发生”)点击文末“阅读原文”获取完整代码数据


我们的生活中有许多关联,一个典型例子是购物篮分析。该过程通过发现顾客放入其购物篮中的不同商品之间的联系,分析顾客的购买习惯。通过了解哪些商品频繁地被顾客同时购买,这种关联的发现可以帮助零售商制定营销策略。其他的应用还包括价目表设计、商品促销、商品的排放和基于购买模式的顾客划分。

本文运用Apriori算法帮助客户对汽车性能相关数据查看文末了解数据免费获取方式进行数据挖掘,探索变量间的关联性。为汽车厂商分类汽车性能提供参考。


汽车性能数据


这个数据模型用于评估车的性能方面的好坏。该数据主要包含一些车的技术性和价格等变量。


数据变量介绍


数据描述2种类型的列车。变量包括:

  • 汽车可接受的价格
  • 买入价格
  • 维护价格
  • 技术特点
  • 舒适度
  • 车门数
  • 携带能力
  • 行李箱
  • 汽车的安全性

所有的变量为分类变量,值为好,一般,较差。

最后的分类属性为车的总体分类:分为4个类型:好,较好,一般和较差。


数据分析框架


本文使用关联规则挖掘apriori算法来发现车的性能价格等属性的常见模式和规则:

1 数据预处理:包括读取数据,清理缺失数据,将数据转化成关联挖掘数据类型。

2 查看频繁项集,发现合适的支持度和置信度阈值用于后续的关联规则挖掘。

3 查看关联规则挖掘结果,发现有价值的规则。


具体数据分析过程


读取数据

表原始数据

查看数据,V1-V7为相应的属性。下面的值分别代表车中设备的数量和性能的好坏。

首先以最小支持度为0.05来挖掘出较频繁出现的规则:

表 频繁规则

可以发现,V4,V7,V5这些属性在数据集中是经常出现的变量。同时可以看到他们的属性值。

于是我们找到最频繁出现的前十个集合(频繁项集):

表 前十个频繁项集

可以看到V7也就是价格是不可接受的车达到了70%左右。其次是V7为unacc和V6为low的车辆集合,也就是价格难以接受和安全性能低的车辆。


进行 Apriori 关联规则 模型的拟合


通过上面的判断,我们将支持度设置为0.1也就是10-%左右,用于筛选出较频繁的规则。

于是进行关联规则挖掘:

表 规则概要

通过查看模型概要,我们可以发现得到了20条规则,其中规则长度1的有1条,2的有8条,3的有11条。


查看规则:

表 规则数据

以及规则的支持度置信度和提高度。

表 规则质量

可以看到每条规则的质量。比如前6条规则,我们可以看到当车的购入价格很高时,大部分消费者认为不能接受这部车。或者当车的维护费用很高时,购买者也不能接受。

或者当车是两个门的时候,一般该车是跑车或者设计特殊,这是人们也会不能接受购买这部车,也许因为它的价格因素。


点击标题查阅往期内容


R语言APRIORI关联规则、K-MEANS均值聚类分析中药专利复方治疗用药规律网络可视化


01

02

03

04



图 关联规则模型结果

从圆圈的大小,我们可以判断规则的支持度大小,从圆圈的颜色深浅我们可以判断该规则的置信度大小。

图 关联规则结果

从上面结果,我们可以看到20条规则的可视化结果,圆圈越大代表该规则的支持度越高,通过箭头我们可以判断其规则的前后推断关系。

于是我们找到置信度和支持度最高的规则,作为最有价值的规则。

表 关联规则有价值的结果

V6为车的安全性,V4为车的装载人数,如果安全性差并且只能装载2个人,消费者不会购买这辆车。因此车的安全性是一个是否购买车的重要的影响因素。

 

数据分析结论


从分析的结果可以看到,关联规则的模型效果在该数据集上效果较好,同时得到了一些有价值的规则,比如人们在购买车辆时主要会考虑车的价格因素,以及他的维护费用,这些因素会影响人们是否购买车辆,其中,人们也十分关心车辆的安全性能和装载性能,当车性能不安全的话,人们很难接受,甚至该因素的影响会超过价格的因素。通过这些规则我们可以对车辆提出一些营销策略。

相关文章
|
9天前
|
传感器 人工智能 算法
企业内训|智能调控系统算法与优化——某汽车厂商
5月9日,东北某市,TsingtaoAI团队为某汽车厂商的智能驾驶业务和研发团队交付“智能调控系统算法与优化”课程。 本课程系统化解析智能调控系统的核心算法原理与前沿优化技术,深度融合经典控制、现代控制及模型预测控制(MPC)三大理论体系,聚焦自动驾驶与工业自动化场景的实践需求。课程从硬件层(传感器、异构计算芯片、执行器)到软件层(闭环反馈、实时优化)逐层拆解系统架构,结合车辆横纵向控制等实际案例,详解PID参数整定、LQR最优控制、MPC多目标优化等关键技术。
47 16
|
8月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
8月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
170 9
|
8月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
120 9
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
7月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
146 3
|
9月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
9月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。