Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析

简介: Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析

全文链接:http://tecdat.cn/?p=32059

分析师:Eileen


电力系统源源不断向各用户提供持续稳定的电能,本文通过对数据的提取,帮助客户分别对不同客户端日,月,年的用电负荷情况进行分析,并通过模型对单户负荷情况进行预测点击文末“阅读原文”获取完整数据


解决方案


任务/目标

本课题的数据分析对象是电力在2011-2014年的370个客户端的耗电数据,根据预测负荷可以安排发电厂发电机组的启停,降低储备容量的浪费,节约成本。

 

数据源准备


负荷预测是用历史负荷建立模型来预测未来负荷的方法,因此历史数据收集的数量、质量直接决定了负荷预测的准确性。所以在负荷预测前,需要收集大量的历史负荷数据、天气数据等。这些数据由于一些因素可能会造成数据的缺失,需要利用一些方法去填补缺失值,提高负荷预测的精确度。

本项目采用均值填补法,找到所有有缺失值的列,用各列的均值填充缺失值。


数据分析


通过曲线类图像,以特定时间周期所统计的负荷值为纵坐标来画出负荷/时间的关系曲线,呈现负荷的大小及发展趋势。例如年、月、季、天等指标。

 

划分训练集和测试集

对样本集拆分成训练集和测试集

values = reframed.values
n_train_time = 365*24*3
train = values[:n_train_time, :]
test = values[n_train_time:, :]

考虑到最终模型会预测将来的某时间段的销量,为了更真实的测试模型效果,以时间来切分训练集和测试集。具体做法如下:假设我们有2011-2014的客户端耗电数据。以2011 ~ 2013的数据作为训练,以2013 ~ 2014的数据作为测试。


建模


LSTM 模型, 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征,将问题转化为监督学习问题。将特征进行规范化、归一化,进而搭建网络模型、训练网络。

ARIMA 一般应用在股票和电商销量领域

该模型用于使用观察值和滞后观察值的移动平均模型残差间的依赖关系,采用了拟合ARIMA(5,1,0)模型,将自回归的滞后值设为5,使用1的差分阶数使时间序列平稳,使用0的移动平均模型。

在此案例中,运用2种方法预测电力负荷,其可视化图形如下:


ARIMA模型


点击标题查阅往期内容


Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据


01

02

03

04


LSTM模型


可以看出,预测值的趋势已经基本与真实趋势保持一致,但是在预测期较长的区间段,其预测值之间的差别较大。


关于分析师


在此对Eileen对本文所作的贡献表示诚挚感谢,她专注数据处理、数据分析、数据预测领域。擅长Python、数据分析。


相关文章
|
3月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
3月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
3月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
4月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
333 102
|
4月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
357 104
|
4月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
285 103
|
4月前
|
机器学习/深度学习 人工智能 数据挖掘
Python:现代编程的首选语言
Python:现代编程的首选语言
212 82
|
3月前
|
Python
Python编程:运算符详解
本文全面详解Python各类运算符,涵盖算术、比较、逻辑、赋值、位、身份、成员运算符及优先级规则,结合实例代码与运行结果,助你深入掌握Python运算符的使用方法与应用场景。
274 3
|
3月前
|
数据处理 Python
Python编程:类型转换与输入输出
本教程介绍Python中输入输出与类型转换的基础知识,涵盖input()和print()的使用,int()、float()等类型转换方法,并通过综合示例演示数据处理、错误处理及格式化输出,助你掌握核心编程技能。
516 3

热门文章

最新文章

推荐镜像

更多