SQL Server Analysis Services数据挖掘聚类分析职业、地区、餐饮消费水平数据

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS SQL Server,基础系列 2核4GB
简介: SQL Server Analysis Services数据挖掘聚类分析职业、地区、餐饮消费水平数据

本文通过 SQL Server Analysis Services数据挖掘的分析模块,帮助客户对一个职业、地区、餐饮消费水平的数据挖掘,并用可视化分析图表显示数据点击文末“阅读原文”获取完整代码数据


该结果可为餐饮业的管理者提供决策依据,进而使餐饮企业获得更多利润。同时,挖掘出与该职业相对应的地区及消费水平,可以为职业发展规划、餐饮市场的开拓提供有效依据。

准备工作:数据.xls 数据导入数据库中。

将表格命名

在相应数据库中找到对应的数据


商业智能项目


选择商业智能项目,analysis services项目,并选择目标文件夹

在解决方案资源管理器中,右键单击数据源,选择新建数据源

在解决方案资源管理器中,右键单击挖掘结构,选择新建挖掘结构

设置输入数据与键Id

设置训练集和测试集的百分比

点击部署模型

看到右下角 部署完成

查看结果


从聚类结果可以看到,聚类将所有用户分成了2个聚类结果。

从不同类别的依赖图可以看到,类别10、4、8、6、7、5之间具有较强的相关关系。说明这几个类别中的变量特征是类似的。下面可以具体看下每个类别中的各个属性的分布的比例。


点击标题查阅往期内容


PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像


01

02

03

04


另外一个聚类中,1、2、9为一个聚类簇,说明这几类别中的变量特征类似。

同时可以看到每个变量再每个类别中的分布情况

可以看到消费水平很低的样本主要分布在分类10中

从上图可以看到 餐饮消费水平较高的类别是1,2,9类别中。

下面可以看到各个分类的剖面图

可以看到每个分类中各个level所占的比例。西餐主要分布在分类1、2中。拍档主要分布在分类6、10中。

年龄的分布也非常明显。大多数分布在26岁左右,分类10的样本年龄最大。同时可以看到分类1 和9 的收入最高,同时他们常去的餐厅类型为西餐。同时可以看到所在城市在分类3中主要是通辽和根河市。他们主要去的餐厅类型是中餐和排档。在分类9中,可以看到医生职业的样本主要去的也是中餐类型。分类1中可以看到,去西餐的样本主要是少了的医生。

然后可以看到总体的分类特征。最常去的餐厅类型为中餐,其次是西餐。年收入最多的区间是51900到67000之间。餐饮消费在10元到18元之间。样本的主要年龄段在20岁到25岁。所在城市主要为根河市,其次是乌兰浩特。样本的职业中,最多的是客服专员。

从每个类别的倾向程度来看,分类1中,主要的样本区的是西餐餐厅。每次的消费在20到30元之间。年收入在8万到12万之间,说明这些样本的收入较高。其中,行政主管所占的百分比较高。有少量的创意总监。

从每个类别的倾向程度来看,分类1中,主要的样本区的是西餐餐厅。他们所在的城市主要在鄂尔多斯。

 

从每个类别的倾向程度来看,分类3中,主要的样本收入在3万3到3万6之间。他们的职业主要是文案策划,常去的餐厅为非西餐餐厅。

从每个类别的倾向程度来看,分类4中,主要的样本区的是中餐餐厅。主要的职业为市场总监。

从每个类别的倾向程度来看,分类5中,主要的样本区的是中餐餐厅。主要的职业为电工和电话销售以及教师。

从每个类别的倾向程度来看,分类6中,主要的样本去的是排挡餐厅。主要的职业为学生和服务员及会计师。该群体大部分收入较低或者没有收入。因此每次的餐厅消费也较低。



相关实践学习
使用SQL语句管理索引
本次实验主要介绍如何在RDS-SQLServer数据库中,使用SQL语句管理索引。
SQL Server on Linux入门教程
SQL Server数据库一直只提供Windows下的版本。2016年微软宣布推出可运行在Linux系统下的SQL Server数据库,该版本目前还是早期预览版本。本课程主要介绍SQLServer On Linux的基本知识。 相关的阿里云产品:云数据库RDS SQL Server版 RDS SQL Server不仅拥有高可用架构和任意时间点的数据恢复功能,强力支撑各种企业应用,同时也包含了微软的License费用,减少额外支出。 了解产品详情: https://www.aliyun.com/product/rds/sqlserver
相关文章
|
4月前
|
SQL 存储 算法
【数据挖掘】恒生金融有限公司2023届秋招数据ETL工程师笔试题解析
恒生科技2022年9月24号数据ETL工程师岗位的笔试题目及答案汇总,包括了SQL选择题、SQL编程题和业务应用SQL编程题,涵盖了数据库基础知识、SQL语句编写以及数据仓库概念等多个方面。
70 2
【数据挖掘】恒生金融有限公司2023届秋招数据ETL工程师笔试题解析
|
4月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
本文总结了2023年第十一届泰迪杯数据挖掘挑战赛A题的新冠疫情防控数据分析,提供了32页和40页的论文以及实现代码,涉及密接者追踪、疫苗接种影响分析、重点场所管控以及疫情趋势研判等多个方面,运用了机器学习算法和SEIR传染病模型等方法。
84 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
|
4月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛A题的解题思路和Python代码实现,涵盖了新冠疫情防控数据的分析、建模方案以及数据治理的具体工作。
87 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
|
4月前
|
Java 测试技术 容器
从零到英雄:Struts 2 最佳实践——你的Web应用开发超级变身指南!
【8月更文挑战第31天】《Struts 2 最佳实践:从设计到部署的全流程指南》深入介绍如何利用 Struts 2 框架从项目设计到部署的全流程。从初始化配置到采用 MVC 设计模式,再到性能优化与测试,本书详细讲解了如何构建高效、稳定的 Web 应用。通过最佳实践和代码示例,帮助读者掌握 Struts 2 的核心功能,并确保应用的安全性和可维护性。无论是在项目初期还是后期运维,本书都是不可或缺的参考指南。
56 0
|
7月前
|
SQL 机器学习/深度学习 算法
SQL SERVER ANALYSIS SERVICES决策树、聚类、关联规则挖掘分析电商购物网站的用户行为数据
SQL SERVER ANALYSIS SERVICES决策树、聚类、关联规则挖掘分析电商购物网站的用户行为数据
|
7月前
|
数据采集 存储 算法
数据分享|Weka数据挖掘Apriori关联规则算法分析用户网购数据
数据分享|Weka数据挖掘Apriori关联规则算法分析用户网购数据
|
7月前
|
算法 数据挖掘 数据库
R语言主成分PCA、决策树、boost预警模型在跨区域犯罪研究数据挖掘分析|数据分享
R语言主成分PCA、决策树、boost预警模型在跨区域犯罪研究数据挖掘分析|数据分享
|
7月前
|
数据可视化 数据挖掘
数据分享|R语言IMDb TOP250电影特征数据挖掘可视化分析受众偏好、排名、投票、评分(下)
数据分享|R语言IMDb TOP250电影特征数据挖掘可视化分析受众偏好、排名、投票、评分
|
7月前
|
数据可视化 算法 数据挖掘
数据分享|R语言IMDb TOP250电影特征数据挖掘可视化分析受众偏好、排名、投票、评分(上)
数据分享|R语言IMDb TOP250电影特征数据挖掘可视化分析受众偏好、排名、投票、评分
|
3月前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")