R语言Pearson相关性分析降雨量和“外卖”谷歌搜索热度google trend时间序列数据可视化

简介: R语言Pearson相关性分析降雨量和“外卖”谷歌搜索热度google trend时间序列数据可视化

它通过分析谷歌搜索引擎每天数十亿的搜索数据,告诉用户某一关键词或者话题各个时期下在谷歌搜索引擎中展示的频率及其相关统计数据。

我们为一位客户进行了短暂的咨询工作,他正在构建一个主要基于谷歌搜索词热度和外卖的分析应用程序。


数据准备


我们需要来检验英国下雨量和人们在谷歌上搜索外卖词汇是否有关联。

总共有六个文件,其中三个是英国降雨量,分别是英格兰+威尔士,苏格兰,和北爱尔兰。这三个文件是txt格式的,里面是日数据。

还有三个数据是google检索量,分别是搜索food takeaway, just eat,和domino’s pizza的,是csv格式的,然后是周数据。


数据预处理


我们先把三个降雨量的数据总和,得出整个英国的每日降雨量

EnglandEngland=read.table("rainfall (England+Wales).txt",skip=3)
scotland=read.table("rainfall(scotland).txt",skip=3)
northern_Ireland=read.table("rainfall(northern Ireland).txt",skip=3)
head(pizza)

然后再删减到和使用的google检索量数据一样,并且也变成周数据,最后整合在一起。

sum= EnglandEngland[,-c(1:2)]+scotland[,-c(1:2)]+northern_Ireland[,-c(1:2)] 
#合并年月
sum=cbind(EnglandEngland

变成类似这样的在Rstudio里

j=1
for(i in week){
 
  yearstart=as.numeric(strsplit(as.character(i),"-")[[1]][1])
  
  if(rowstart==rowend)weeksum[j]=  sum( sum[rowstart,(daystart+2):(dayend+2)])
  else weeksum[j]= sum( sum[rowstart,(daystart+2):33])+sum( sum[rowend,3:(dayend+2) ])
  rainfall  Food takeaway Just eat Domino’spizza
2011-01-02-2011-01-08



2011-01-09-2011-01-15



………





点击标题查阅往期内容


【视频】Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析|数据分享


01

02

03

04

Pearson's相关性检验


在统计学中,皮尔逊相关系数,是用于度量两个变量X和Y之间的相关(线性相关),其值介于-1与1之间,其绝对值越大说明该两个变量越相关。

然后分别检验每个和降雨量的联系,用correlation coefficient的方法,得出来3个统计结果。

首先看Y与X是否有显著关系,即P值大小,接着分析相关关系为正向或负向,也可通过相关系数大小说明关系紧密程度。一般相关系数在0.7以上说明关系非常紧密。p<0.05,因而说明外卖搜索热度和降雨量之间有着较显著的正相关关系。达美乐披萨搜索热度和降雨量之间没有显著的正相关关系。


搜索可视化


最后做一张图,纵坐标是降雨量,横坐标是搜索量,三个检索量分别用三个颜色表示。

library(ggplot2)
ggplot(cordata, aes(weeksum)) + 
  geom_line(aes(y = domino.s.pizza, colour =

相关文章
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
4月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
79 3
|
4月前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
180 3
|
5月前
|
安全 中间件 PHP
Google Hacking高级实战-搜索特定口子-敏感信息
Google Hacking高级实战-搜索特定口子-敏感信息
|
5月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
5月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
5月前
|
机器学习/深度学习 算法
R语言超参数调优:深入探索网格搜索与随机搜索
【9月更文挑战第2天】网格搜索和随机搜索是R语言中常用的超参数调优方法。网格搜索通过系统地遍历超参数空间来寻找最优解,适用于超参数空间较小的情况;而随机搜索则通过随机采样超参数空间来寻找接近最优的解,适用于超参数空间较大或计算资源有限的情况。在实际应用中,可以根据具体情况选择适合的方法,并结合交叉验证等技术来进一步提高模型性能。
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
6月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
9月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2898 1
如何用Google Earth Engine快速、大量下载遥感影像数据?

热门文章

最新文章