R语言量化技术分析的百度指数关注度交易策略可视化

简介: R语言量化技术分析的百度指数关注度交易策略可视化

全文链接:http://tecdat.cn/?p=31556


传统的经济理论认为股票市场是有效的,价格波动是对市场信息的反应,投资者能够及时处理所有实时信息并做出最优决策点击文末“阅读原文”获取完整代码数据


交易策略基本思想

投资者的当期关注和股票当期收益呈现正向变动关系,而投资者的滞后关注对股票当期收益表现为负面影响,根据这一结论,投资者应该根据关注度的变化情况适当的做出交易策略,当股票的关注度高时卖出股票,而当关注度低时则买入股票。

利用百度指数的日度数据衡量投资者的日度关注状况,但日度以内就无法在进行细分了,无法实现同一天内投资者关注度变化的衡量,所以自能以日度数据为基础研究前一期或者前数期投资者关注度的变化对当前投资决策的指导作用。当前日投资者对某只股票的关注度偏高时,应该在当期卖出标的,以获得关注度的溢价收益。

关注度数据:

绝对高关注度交易策略

绝对高关注度就是设定一个数值为关注度达到的偏高标准,一般情况下就是根据股票关注度的历史数据来定义绝对关注度偏高标准,具体的定义如下:

为对应标的样本区间前三个月历史日关注度的前20%分位数,当此值大于当期投资者关注时,则认为关注度是偏低的;为对应标的样本区间前三个月历史日关注度的前80%分位数,此数值大于当期关注度时,则认为关注度处于偏高状态;当当期关注度介于前20%分位数和前80%分位数时,则认为此时的关注度处在正常范围内,既不偏高也不偏低。

交易策略设计思想

根据上文实证研究结果,高关注度会给当期带来超额收益,但在反转效应的驱使下,后期的股价将会走低,也就是说高关注度之后股价会下行,反之低关注度之后股价会上升,所以结合上文对绝对高关注度的定义,其交易策略可以设定为:

Cash[i+1]=stockprice[i-1]+Cash[i]#关注度低于q_20
      stockprice[i]=0# 卖出
      n=0
     
    }else{
      if(ldata[i]>q_80){
        p=0.3;#如果高于关注度,设置买入股数的比率
        up=(cdata[i]-cdata[i-1])/(cdata[i-1])#计算涨幅

从上式可以看出,如果关注度偏低,就执行买入策略,如果关注度偏高,就执行卖出策略,这一操作思想是完全根据投资者关注度有没有达到设定的高标准,通过对高关注度定义执行买卖操作以获取股票溢价。需要强调的是,这里的买卖策略是简化了的策略,是在不考虑其他因素的情况而仅仅根据关注度的高低执行的交易策略,以便将问题简单化。

交易策略实施过程

每个策略必须有代表股票的交易策略图。

三种策略最后的结果汇总,如下图

项目 收益均值 收益为正次数 平均交易次数 收益与最大回撤比值均值
数值 1.83 109 8.349112 86.6%


三种策略下每只股票的具体结果 116*3=348个具体结果

每个策略运行的是116只股票,483个交易日的数据,买入和卖出股票是用有限关注(AT)进行衡量(以过去三个月关注度为参考)

##筛选出股票数据
index= which(substr(a,1,4)=="SH60"|substr(a,1,4)=="SZ00");


策略1:绝对高关注度交易策略


points(profitindex,ldata[sort(profitindex)],col="green")#5日均线
  lines(cdata[(startdate+1): length(cdata)]/10 ,col="red")
  #绘制收益曲线
  #plot(profit,type="b")

点击标题查阅往期内容


Python配对交易策略统计套利量化交易分析股票市场


01

02

03

04


项目 收益均值 收益为正次数 平均交易次数 收益与最大回撤比值均值
数值 9.91 647 4.5625 86.9%

策略2:相对高关注度


项目 收益均值 收益为正次数 平均交易次数 收益与最大回撤比值均值
数值 11.04 743 3.9624 78.9%

策略3:基于技术分析的关注度交易策略


相关文章
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
60 3
|
3月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
7月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
4月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
4月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
4月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
91 3
|
7月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)