云原生数据仓库产品使用合集之可以把ADB MySQL湖仓版数据库做成页面查询的数据库吗

简介: 阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。

问题一:云数据仓库ADB这样的语句 查询要二十多秒 是不是有问题?

云数据仓库ADB这样的语句 查询要二十多秒 是不是有问题?

select * FROM

t_user_wz_fund_record

WHERE

fund_type = 2

AND member_id = 463384



参考答案:

对于这个问题,可以从以下几个方面入手:

  1. 检查表结构和数据量:如果表中有大量的数据,查询时间可能会很长。可以检查表中是否有大量的记录,以及是否有可能的冗余数据。
  2. 检查索引:如果查询的字段没有合适的索引,会导致查询速度变慢。可以考虑为member_id和fund_type添加合适的索引。
  3. 查看查询计划:可以使用EXPLAIN关键字查看查询计划,以了解查询的执行方式。如果发现查询计划不合理,可以考虑优化查询语句。
  4. 优化查询语句:尽量减少不必要的运算符和函数,简化查询语句,以减少查询的执行时间。
  5. 调整参数:可以考虑调整ADB的相关参数,例如设置合理的缓存大小和预处理阈值,以提高查询性能。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/571418



问题二:我有几张表,十亿左右,每日增量在100w左右,要做连表查询分析,应该选ADB MySQL湖仓版么?

我有几张表,大概十亿左右,每日增量大概在100w左右,要做连表查询分析,应该选ADB MySQL湖仓版么?



参考答案:

根据您的描述,ADB MySQL Lakehouse 可能是一个不错的选择。它提供了类似传统 RDBMS 的操作方式,同时具备分布式特性,可以更好地处理大数据场景。

另外,您还可以选择其他的大数据解决方案,比如 Hive、Hadoop 等,但要考虑到以下因素:

  1. 系统规模:ADB MySQL Lakehouse 支持 PB 级别的数据存储和处理能力;
  2. 性能:相比于传统 RDBMS,ADB MySQL Lakehouse 可以更好地处理大数据;
  3. 成本:考虑到 TCO,建议选择性价比高的解决方案;
  4. 兼容性:ADB MySQL Lakehouse 支持 SQL ,可以与 RDBMS 数据迁移和查询。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/572449



问题三:ADB MySQL湖仓版数据库支持多少并发?可以做页面查询的数据库么?

ADB MySQL湖仓版数据库支持多少并发?可以做页面查询的数据库么?



参考答案:

云原生数据仓库AnalyticDB MySQL版,也被称为ADB,是阿里巴巴自主研发的海量数据实时高并发在线分析云计算服务。具有高度兼容性,它与MySQL协议、SQL:92、SQL:99、SQL:2003标准完全兼容,并设计用于对千亿级数据进行即时的多维分析透视和业务探索。

作为一种支持高并发低延时查询的新一代云原生数据仓库,ADB基于湖仓一体架构打造,支持毫秒级更新和亚秒级查询。而且,它是云端托管的PB级高并发实时数据仓库,专注于服务OLAP领域。因此,对于页面查询的需求,ADB完全可以胜任。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/572450



问题四:想问一下大家平常开发ADB数仓用到的技术和流程

我想问一下开发数仓用到的技术,阿里云的ADB提供了三种

  1. sql开发可以直接在页面执行sql,但是对复杂业务处理数据好像不太方便。
  2. spark jar开发,可以通过java去编写程序进行处理数据,我想请问下是有多个任务节点的话需要多个jar包去排序执行任务吗。
  3. notebook开发,这个是可以用到spark引擎的吗,我见里面是一个一个代码块在一起的。

我想问一下大家,平常主要通过哪种任务进行开发呢,包括开发流程,然后还有开发后要在ADB自动执行之类的
比如:通过spark jar开发,对每一个业务进行开发流程,然后上传spark jar,通过作业调度去执行jar文件。
谢谢



参考答案:

ADB 数据仓库的信息,在日常的 ADB 数据仓库开发中常常用到的技术包括:

  1. 数据建模:在设计阶段创建数据模型,并利用图灵完备的数据建模语言构建关系数据库的数据模型;
  2. SQL 查询优化:通过索引、缓存等技术提高查询效率;
  3. ETL 流程:使用 ADB 中的 Spark Streaming 和 DataStream API 实现数据集成、清洗和转化的过程;
  4. BI 报表生成:利用 Tableau、PowerBI 等 BI 工具进行报表制作和展示;
  5. 用户权限管理:设置合适的用户角色权限,确保安全性及灵活性。

下面是大概的流程:

  1. 构建 ADB 数据仓库架构,并配置相应的元数据管理工具;
  2. 数据集成:采集各种来源的数据,将它们整合在一起形成完整的数据分析视图;
  3. 数据清洗与预处理:消除冗余和异常的数据;
  4. ETL:建立数据流转管道,并按照业务需求进行数据转换;
  5. OLAP 分析:使用 Hive、SparkSQL 等工具进行复杂的数据分析;
  6. 反馈及监控:定期监控并分析数据仓库的性能指标,及时发现问题并提出解决方案;
  7. 数据可视化:利用 BI 工具进行报表展示。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/572454



问题五:ECU是什么单位,1个ECU代表多大?

ECU是什么单位,1个ECU代表多大?



参考答案:

ECU 是 Elastic Compute Unit 的简称,是衡量计算能力的一个单位,表示计算能力的大小。1 ECU 相当于一台高性能计算机运算能力,在每秒能处理的数据量方面来说,大致相当于双核 CPU 上大约 4GHz 的处理速度(CPU 内核)加上 1 GB 内存的计算能力。然而,这个比例不是固定不变的,不同的实例规格有不同的 ECU 和硬件配置比例。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/572815

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
SQL DataWorks 关系型数据库
DataWorks产品使用合集之如何跨账号访问同一个MySQL
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
161 2
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之如何创建mysql临时表
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
12月前
|
SQL 关系型数据库 OLAP
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
449 2
|
人工智能 关系型数据库 MySQL
AnalyticDB MySQL版:云原生离在线一体化数据仓库支持实时业务决策
AnalyticDB MySQL版是阿里云推出的云原生离在线一体化数据仓库,支持实时业务决策。产品定位为兼具数据库应用性和大数据处理能力的数仓,适用于大规模数据分析场景。核心技术包括混合负载、异构加速、智能弹性与硬件优化及AI集成,支持流批一体架构和物化视图等功能,帮助用户实现高效、低成本的数据处理与分析。通过存算分离和智能调度,AnalyticDB MySQL可在复杂查询和突发流量下提供卓越性能,并结合AI技术提升数据价值挖掘能力。
385 16
|
消息中间件 关系型数据库 MySQL
实时计算 Flink版产品使用问题之使用CTAS同步MySQL到Hologres时出现的时区差异,该如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
分布式计算 DataWorks 关系型数据库
DataWorks产品使用合集之ODPS数据怎么Merge到MySQL数据库
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
295 1
|
DataWorks 关系型数据库 MySQL
DataWorks产品使用合集之mysql节点如何插入数据
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
239 1
|
SQL 存储 关系型数据库
实时计算 Flink版产品使用问题之同步MySQL多张表的过程中,内存释放依赖于什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
存储 分布式计算 DataWorks
DataWorks产品使用合集之在本地客户端一直无法连接ADB MySQL,是什么原因
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
253 0
|
SQL Oracle 关系型数据库
实时计算 Flink版产品使用问题之连接到MySQL的从库时遇到其他服务也连接到了从库,该如何处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

相关产品

  • 云原生数据仓库AnalyticDB MySQL版
  • 云原生数据仓库 AnalyticDB PostgreSQL版
  • 推荐镜像

    更多