人工智能平台PAI产品使用合集之机器学习PAI可以通过再建一个done分区或者使用instance.status来进行部署吗

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:机器学习PAI只能用再建一个 done分区的方式吗?instance.status 这种方式可行吗?

机器学习PAI只能用再建一个 done分区的方式吗?instance.status 这种方式可行吗?



参考答案:

没有表分区对应instance id的概念。但是你可以从openapi拿到所有实例,https://help.aliyun.com/zh/dataworks/developer-reference/api-listinstances



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566647



问题二:机器学习PAI我如何知道某个表某个分区的instances id呢?

机器学习PAI如果我想本地查某个表的某个分区的状态,

我看到pyodps可以这样。

instance = o.get_instance('2016042605520945g9k5pvyi2')

instance.status

但是我如何知道某个表某个分区的instances id呢?

而且odps.list_instances() 得到的instances id 与dataworks运维里查的不一样。

odps.list_instances() 的结果是前面数字,后面字母。

dataworks运维里查的只有一串数字



参考答案:

可以参考下

import datetime

import sys

from odps import ODPS

获取前1天或N天的日期,beforeOfDay=1:前1天;beforeOfDay=N:前N天

def getdate(beforeOfDay):

today = datetime.datetime.now()

# 计算偏移量
offset = datetime.timedelta(days=-beforeOfDay)
# 获取想要的日期的时间
re_date = (today + offset).strftime('%Y%m%d')
return re_date

table上传完成后在signal table中创建一个done分区

signal_table = '{table_name}'

round = 60

sec = 300

每5分钟检查一次,一共60次,共等待5个小时

日期

day = getdate(1)

print(day)

得到表

import time

while round > 0:

t = o.get_table(signal_table)

exist = t.exist_partition('day=%s.done'%(day))
if exist:
    print("found partition %s.done"%(day))
    sys.exit(0)
print(time.asctime( time.localtime(time.time()) ),",can not found partition %s.done"%(day))
time.sleep(sec)

print("can not found partition %s.done"%(day))

sys.exit(1)


关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566645



问题三:机器学习PAI_rec 怎么配置用户新增的特征?是在这个里面配置?

机器学习PAI_rec 怎么配置用户新增的特征?是在这个里面配置?



参考答案:

https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/pairec/docs/pairec/html/config/feature.html



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566639



问题四:使用通义灵码时,对话框字体怎么设置?

使用通义灵码时,对话框字体怎么设置?



参考答案:

目前还不支持,我们会尽快优化



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566520



问题五:阿里AI克隆人声模型

你好,我使用了阿里AI克隆人声模型,请问训练AI大概要多长时间?



参考答案:

阿里AI克隆人声模型的训练时间取决于很多因素,例如样本的数量和质量,训练环境等因素,一般需要几天到几周不等的时间



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566000

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
3月前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
1月前
|
人工智能 调度 芯片
PAI训练服务:云上大模型训练新篇章
本文介绍了通用AI时代下的新训练方法及PAI平台的优化。随着大模型时代的到来,算力需求激增,硬件和网络通信成为瓶颈。PAI平台通过自动容错、3D健康检测等技术确保训练稳定性;通过资源配额、智能调度等提高性价比;并推出PAI-TorchAcc和PAI-ChatLearn两大引擎,分别实现高效训练加速和灵活的对齐训练,显著提升训练性能与效果。这些改进解决了大规模AI训练中的关键问题,提升了效率和稳定性。
|
2月前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
|
2月前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
109 27
|
2月前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
72 12
|
1月前
|
人工智能 容灾 Serverless
AI推理新纪元,PAI全球化模型推理服务的创新与实践
本次分享主题为“AI推理新纪元,PAI全球化模型推理服务的创新与实践”,由阿里云高级产品经理李林杨主讲。内容涵盖生成式AI时代推理服务的变化与挑战、play IM核心引擎的优势及ES专属网关的应用。通过LM智能路由、多模态异步生成等技术,PAI平台实现了30%以上的成本降低和显著性能提升,确保全球客户的业务稳定运行并支持异地容灾,目前已覆盖16个地域,拥有10万张显卡的推理集群。
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能与机器学习的融合之路
在本文中,我们将探讨人工智能(AI)与机器学习(ML)之间的紧密联系以及它们如何共同推动技术革新。我们将深入分析这两种技术的基本概念、发展历程和当前的应用趋势,同时讨论它们面临的挑战和未来的发展方向。通过具体案例研究,我们旨在揭示AI与ML结合的强大潜力,以及这种结合如何为各行各业带来革命性的变化。
57 0
|
3月前
|
机器学习/深度学习 数据采集 人工智能
人工智能与机器学习:解锁数据洞察力的钥匙
人工智能与机器学习:解锁数据洞察力的钥匙
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
193 6

热门文章

最新文章

相关产品

  • 人工智能平台 PAI