人工智能平台PAI产品使用合集之机器学习PAI-EAS部署好后,服务的公网API和URL怎么配置

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:调用流.print,那个日志在哪儿能看到。机器学习PAI程序如果后台运行的话,不知道输出到哪儿了。

调用流.print,那个日志在哪儿能看到。程序如果后台运行的话,不知道输出到哪儿了。python的



参考答案:

python日志的话,应该获取不到,结果是在标准输出里



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/569659



问题二:Alink能去会话模式的flink集成吗?弹性收缩那种模式

Alink能去会话模式的flink集成吗?弹性收缩那种模式



参考答案:

session里边useEnv的时候给对flink master地址应该就可以



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/569657



问题三:机器学习PAI 部署后平台自动就生成我项目API对应的公网url了吗?

机器学习PAI endpoint就是服务的公网URL吧,只要我自己代码里做好API接口就行,部署后平台自动就生成我项目API对应的公网url了吗?还有怎么把自己的项目部署到EAS上,有文件说明吗 ?目前项目在本地电脑



参考答案:

是的,参考下文档,我们建议打成docker自定义镜像部署 https://help.aliyun.com/zh/pai/user-guide/service-deployment/?spm=a2c4g.11186623.0.0.70d96b5eSGQsJC



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/568874



问题四:把自己的项目服务用机器学习PAI-EAS部署,怎么配置服务的公网API和URL呀?

把自己的项目服务用机器学习PAI-EAS部署,怎么配置服务的公网API和URL呀?



参考答案:

服务部署好后eas控制台会有显示endpoint地址



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/568873



问题五:想问一下机器学习PAI DeepRec可以在Windows的pycharm上运行吗?

想问一下机器学习PAI DeepRec可以在Windows的pycharm上运行吗?



参考答案:

开个虚拟机吧



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/568792

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
24天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
67 1
|
1月前
|
开发框架 .NET API
Windows Forms应用程序中集成一个ASP.NET API服务
Windows Forms应用程序中集成一个ASP.NET API服务
96 9
|
2月前
|
人工智能 Serverless API
一键服务化:从魔搭开源模型到OpenAI API服务
在多样化大模型的背后,OpenAI得益于在领域的先发优势,其API接口今天也成为了业界的一个事实标准。
一键服务化:从魔搭开源模型到OpenAI API服务
|
2月前
|
Go API 开发者
深入探讨:使用Go语言构建高性能RESTful API服务
在本文中,我们将探索Go语言在构建高效、可靠的RESTful API服务中的独特优势。通过实际案例分析,我们将展示Go如何通过其并发模型、简洁的语法和内置的http包,成为现代后端服务开发的有力工具。
|
3月前
|
API Java Python
API的神秘面纱:从零开始构建你的RESTful服务
【8月更文挑战第31天】在现代网络应用开发中,RESTful API已成为数据交互的标准。本文通过比较流行的技术栈(如Node.js、Python的Django和Flask、Java的Spring Boot)及其框架,帮助你理解构建RESTful API的关键差异,涵盖性能、可扩展性、开发效率、社区支持、安全性和维护性等方面,并提供示例代码和最佳实践,指导你选择最适合项目需求的工具,构建高效、安全且易维护的API服务。
59 0
|
3月前
|
Java 缓存 数据库连接
揭秘!Struts 2性能翻倍的秘诀:不可思议的优化技巧大公开
【8月更文挑战第31天】《Struts 2性能优化技巧》介绍了提升Struts 2 Web应用响应速度的关键策略,包括减少配置开销、优化Action处理、合理使用拦截器、精简标签库使用、改进数据访问方式、利用缓存机制以及浏览器与网络层面的优化。通过实施这些技巧,如懒加载配置、异步请求处理、高效数据库连接管理和启用GZIP压缩等,可显著提高应用性能,为用户提供更快的体验。性能优化需根据实际场景持续调整。
80 0
|
3月前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
84 0
|
3月前
|
前端开发 开发者 设计模式
揭秘Uno Platform状态管理之道:INotifyPropertyChanged、依赖注入、MVVM大对决,帮你找到最佳策略!
【8月更文挑战第31天】本文对比分析了 Uno Platform 中的关键状态管理策略,包括内置的 INotifyPropertyChanged、依赖注入及 MVVM 框架。INotifyPropertyChanged 方案简单易用,适合小型项目;依赖注入则更灵活,支持状态共享与持久化,适用于复杂场景;MVVM 框架通过分离视图、视图模型和模型,使状态管理更清晰,适合大型项目。开发者可根据项目需求和技术栈选择合适的状态管理方案,以实现高效管理。
44 0
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
全面解析TensorFlow Lite:从模型转换到Android应用集成,教你如何在移动设备上轻松部署轻量级机器学习模型,实现高效本地推理
【8月更文挑战第31天】本文通过技术综述介绍了如何使用TensorFlow Lite将机器学习模型部署至移动设备。从创建、训练模型开始,详细演示了模型向TensorFlow Lite格式的转换过程,并指导如何在Android应用中集成该模型以实现预测功能,突显了TensorFlow Lite在资源受限环境中的优势及灵活性。
258 0
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
TensorFlow Serving 部署指南超赞!让机器学习模型上线不再困难,轻松开启高效服务之旅!
【8月更文挑战第31天】TensorFlow Serving是一款高性能开源服务系统,专为部署机器学习模型设计。本文通过代码示例详细介绍其部署流程:从安装TensorFlow Serving、训练模型到配置模型服务器与使用gRPC客户端调用模型,展示了一站式模型上线解决方案,使过程变得简单高效。借助该工具,你可以轻松实现模型的实际应用。
57 0

相关产品

  • 人工智能平台 PAI
  • 下一篇
    无影云桌面