Python用Lstm神经网络、离散小波转换DWT降噪对中压电网电压时间序列预测

简介: Python用Lstm神经网络、离散小波转换DWT降噪对中压电网电压时间序列预测

全文链接:http://tecdat.cn/?p=31149


对于电力公司来说,对局部放电的准确预测可以显著降低人力物力成本。据调查,80%的输电设备损坏是随机发生的,而只有20%由于老化

而损坏案例中又有85%是由于局部放电现象的发生。电厂98%的维护费用于支付维修师的薪资。因此,准确的预测电网的电压变化并预测局部放电现象的发生,可以极大的降低维修师的工作效率并降低维护成本。

相关视频

N37R@Y6VQAF$76D_0ZL[LK9.png

RQSESNK_`FZANIN0Y$J}QC8.png

解决方案

任务 / 目标

根据电力公司提出的要求,利用电压数据对电网电压进行电压预测。

数据源准备

数据源来自电力公司的电网监测系统,他们记录了电网位置( id_measurement ):用于记录电网的地理位置。信号( signal_id ):每个 signal_id 包含 20 毫秒内的 800 000 个电压数据。相( phase ):用于标记设备的相。目标( target ):用于标记设备是否发生局部放电。

L[[)V]K{BFIHH9H7_B0OWCS.png


点击标题查阅往期内容


CP}]01~BKX}U(}]E}XL0I~3.png

分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测

左右滑动查看更多

01

JF)W])17(6AK`BPSW$I0`Y2.png

02

1(L@_4I2F4(P5TPMAJKQQ2D.png

03

M0F7U4V$(WT(%MMF3_MOPEP.png

04

V%FU$6B@ZBEGLF)W@K_@5BJ.png



特征转换

对每段id_mesurement的三相电压值求和,正常情况下,在同一时间的三相电压和为零。以用于辅助判断是否发生局部放电。

构造

数据集结构如下

]3$M7EUX5YHX5@_FHP72C$2.png

划分训练集和测试集

因为数据集包含20毫秒内的压力变化,因此以时间顺序将前75%划分为训练集,后25%为测试集。

建模

长短期记忆模型(LSTM)

一种特殊结构的循环神经网络,适用于时间序列数据的预测,建立较大的深度神经网络。

模型优化

数据降噪

电压数据来自现实世界,因此存在许多噪点,利用离散小波转换(DWT)对电压数据进行降噪,使正常电压数据归于平稳,局部放电现象更易被察觉。

1V9EMY@HFO411@NZF__`_)4.png

项目结果

利用Lstm很好的对未来电压值进行了预测,预测准确率达到85.3%。

但是,即使对于Lstm,序列的长度仍然太长了(200-300更佳),若能对数据序列进行压缩,有可能得到更好的预测结果。

关于作者

在此对Yuxuan Xia对本文所作的贡献表示诚挚感谢,他毕业于西北大学,专长深度学习、推荐算法、决策分析。


相关文章
|
17天前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
49 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
162 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
71 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
15天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
70 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
8天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
19天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
59 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
1月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
86 37
Python时间序列分析工具Aeon使用指南
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
83 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
13天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真

热门文章

最新文章