千亿大模型来了!通义千问110B模型开源,魔搭社区推理、微调最佳实践

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 近期开源社区陆续出现了千亿参数规模以上的大模型,这些模型都在各项评测中取得杰出的成绩。今天,通义千问团队开源1100亿参数的Qwen1.5系列首个千亿参数模型Qwen1.5-110B,该模型在基础能力评估中与Meta-Llama3-70B相媲美,在Chat评估中表现出色,包括MT-Bench和AlpacaEval 2.0。

近期开源社区陆续出现了千亿参数规模以上的大模型,这些模型都在各项评测中取得杰出的成绩。今天,通义千问团队开源1100亿参数的Qwen1.5系列首个千亿参数模型Qwen1.5-110B,该模型在基础能力评估中与Meta-Llama3-70B相媲美,在Chat评估中表现出色,包括MT-Bench和AlpacaEval 2.0。

Qwen1.5-110B与其他Qwen1.5模型相似,采用了相同的Transformer解码器架构。它包含了分组查询注意力(GQA),在模型推理时更加高效。该模型支持32K tokens的上下文长度,同时它仍然是多语言的,支持英、中、法、西、德、俄、日、韩、越、阿等多种语言。

下图为基础语言模型效果评估,并与最近的SOTA语言模型Meta-Llama3-70B以及Mixtral-8x22B进行了比较。

image.png

上述结果显示,千问110B模型在基础能力方面至少与Llama-3-70B模型相媲美。在这个模型中,没有对预训练的方法进行大幅改变,因此110B模型和72B相比的性能提升主要来自于增加模型规模。

在MT-Bench和AlpacaEval 2.0上进行了Chat评估,结果如下:

image.png

与之前发布的Qwen1.5-72B模型相比,在两个Chat模型的基准评估中,110B表现显著更好。评估结果的持续改善表明,即使在没有大幅改变后训练方法的情况下,更强大、更大规模的基础语言模型也可以带来更好的Chat模型

Qwen1.5-110B是Qwen1.5系列中规模最大的模型,也是该系列中首个拥有超过1000亿参数的模型。它在与最近发布的SOTA模型Llama-3-70B的性能上表现出色,并且明显优于72B模型。这告诉我们,在模型大小扩展方面仍有很大的提升空间。虽然Llama-3的发布表明预训练数据规模具有重要意义,但我们相信通过在未来的发布中同时扩展数据和模型大小,我们可以同时获得两者的优势。敬请期待Qwen2!

小编划重点:

  • 首个千亿级模型来袭,Qwen1.5-110B,今天发布了base和chat模型,量化模型和GGUF模型也将会发布。
  • Qwen1.5-110B相比72B效果有很大的提升,该提升主要来自模型规模的提升。
  • Qwen1.5-110B和最近发布的SOTA模型Llama-3-70B的性能上相比不分伯仲,未来通义千问团队将会探索模型规模提升和扩展预训练数据规模两种方法同时带来的优势,请大家期待Qwen2!

魔搭社区最佳实践

模型体验:

体验链接:

https://modelscope.cn/studios/qwen/Qwen1.5-110B-Chat-demo

为了便于大家比较,社区搭建了Llama3-70B-Instruct和Qwen1.5-110B-Chat的对比环境,体验链接:

https://www.modelscope.cn/studios/LLM-Research/Llama3-Qwen1.5-Arena

例如,多语言能力:

image.png

小学数学so easy:

image.png

再难一点也不在话下:

image.png

逻辑能力:

image.png

模型下载

模型链接:

Qwen1.5-110B-Chat:

https://www.modelscope.cn/models/qwen/Qwen1.5-110B-Chat

Qwen1.5-110B:

https://www.modelscope.cn/models/qwen/Qwen1.5-110B

from modelscope import snapshot_download
model_dir = snapshot_download('qwen/Qwen1.5-110B-Chat')

模型推理

推理代码:

from modelscope import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
    "qwen/Qwen1.5-110B-Chat",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen1.5-110B-Chat")
prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

显存要求(4卡A100,230G显存):

image.png

模型训练

魔搭社区的微调框架SWIFT已经支持了Qwen1.5全系列模型的微调和推理。

下面我们以自我认知任务为例针对千问1.5-110b-chat模型为例给出训练参数配置:

nproc_per_node=4
CUDA_VISIBLE_DEVICES=0,1,2,3 \
NPROC_PER_NODE=$nproc_per_node \
swift sft \
    --model_type qwen1half-110b-chat \
    --sft_type lora \
    --tuner_backend peft \
    --dtype AUTO \
    --output_dir output \
    --ddp_backend nccl \
    --num_train_epochs 2 \
    --max_length 2048 \
    --check_dataset_strategy warning \
    --lora_rank 8 \
    --lora_alpha 32 \
    --lora_dropout_p 0.05 \
    --lora_target_modules ALL \
    --gradient_checkpointing true \
    --batch_size 1 \
    --weight_decay 0.1 \
    --learning_rate 1e-4 \
    --gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
    --max_grad_norm 0.5 \
    --warmup_ratio 0.03 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 2 \
    --logging_steps 10 \
    --use_flash_attn true \
    --deepspeed default-zero3 \
    --self_cognition_sample 2000 \
    --model_name 小白 'Xiao Bai' \
    --model_author 魔搭 ModelScope \

训练loss:

image.png

可以看到其收敛非常平滑。

训练的显存使用情况:

image.png

训练后推理可以使用如下脚本(注意将--ckpt_dir替换为训练log输出的weights路径):

# Experimental environment: 4*A100
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift infer \
    --ckpt_dir "/output/qwen1half-110b-chat/vx-xxx/checkpoint-xx" \
    --load_dataset_config true \
    --max_length 2048 \
    --eval_human true \
    --use_flash_attn false \
    --max_new_tokens 2048 \
    --temperature 0.1 \
    --top_p 0.7 \
    --repetition_penalty 1. \
    --do_sample true \
    --merge_lora_and_save false \


自我认知对话测试:

image.png

通用对话测试:

image.png

相关文章
|
2月前
|
人工智能 开发者
通义千问三款主力模型再降价,最高降幅85%
通义千问三款主力模型再降价,最高降幅85%
569 12
通义千问三款主力模型再降价,最高降幅85%
|
2月前
|
编解码 JSON 自然语言处理
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
2705 19
|
2月前
|
人工智能 自动驾驶 云栖大会
大模型赋能智能座舱,NVIDIA 深度适配通义千问大模型
9月20日杭州云栖大会上, NVIDIA DRIVE Orin系统级芯片实现了与阿里云通义千问多模态大模型Qwen2-VL的深度适配。阿里云、斑马智行联合NVIDIA英伟达推出舱驾融合大模型解决方案,基于通义大模型开发“能听会看”的智能座舱助理,让车内人员通过语音交流就能操作座舱内的各类应用,享受极致丰富的交互体验。
232 14
|
2月前
|
API 云栖大会
通义千问升级旗舰模型Qwen-Max,性能接近GPT-4o
通义旗舰模型Qwen-Max全方位升级,性能接近GPT-4o
999 11
|
2月前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
20天前
|
人工智能 边缘计算 自然语言处理
DistilQwen2:通义千问大模型的知识蒸馏实践
DistilQwen2 是基于 Qwen2大模型,通过知识蒸馏进行指令遵循效果增强的、参数较小的语言模型。本文将介绍DistilQwen2 的技术原理、效果评测,以及DistilQwen2 在阿里云人工智能平台 PAI 上的使用方法,和在各开源社区的下载使用教程。
|
28天前
|
自然语言处理 Java API
Spring Boot 接入大模型实战:通义千问赋能智能应用快速构建
【10月更文挑战第23天】在人工智能(AI)技术飞速发展的今天,大模型如通义千问(阿里云推出的生成式对话引擎)等已成为推动智能应用创新的重要力量。然而,对于许多开发者而言,如何高效、便捷地接入这些大模型并构建出功能丰富的智能应用仍是一个挑战。
106 6
|
11天前
通义千问—7B模型
在交互式问答中,模型对历史信息的记忆能力较弱。例如,在询问“辽宁省会在哪儿”之后,如果不持续提及“沈阳”,模型将无法记住该城市,导致回答变得空泛。
|
27天前
|
存储 人工智能 Serverless
通义千问大模型
在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的AI大模型助力客户对话分析方案,通过整合多种云服务,实现对话内容的自动化分析,提升服务质量和客户体验。本文将深入评测该方案的优势与实际应用效果。
|
2月前
|
编解码 自然语言处理 机器人
通义千问Qwen2-VL开源,API可直接调用!
通义千问宣布开源第二代视觉语言模型Qwen2-VL,并推出2B、7B两个尺寸及其量化版本模型。同时,旗舰模型Qwen2-VL-72B的API已上线阿里云百炼平台,用户可直接调用。
976 9

热门文章

最新文章