python实现股票均线策略案例

简介: 此Python代码示例展示了如何运用均线策略进行股票交易模拟。它下载AAPL的股票历史数据,计算每日收益率,设置短期和长期移动平均线。当短期均线超过长期均线时,模拟买入;反之则卖出。代码遍历每一天,更新现金和股票余额,并最终计算总收益。请注意,实际交易需考虑更多因素如交易费用和风险管理。

好的,以下是一个使用Python实现股票均线策略案例的简单示例:

import pandas as pd
import yfinance as yf

# 读取股票历史数据
stock_data = yf.download("AAPL", start="2020-01-01", end="2022-12-31")

# 计算每日收益率
stock_data["Return"] = stock_data["Close"].pct_change()

# 定义交易策略
def trading_strategy(data, stock_name, initial_investment):
    # 计算短期和长期移动平均线
    short_window = 50
    long_window = 200
    short_moving_average = data["Close"].rolling(window=short_window).mean()
    long_moving_average = data["Close"].rolling(window=long_window).mean()

    # 判断买入信号
    if short_moving_average > long_moving_average:
        if data["Cash"] > 0:
            # 购买股票
            data["Cash"] -= stock_data[stock_name].tail(1)["Close"][-1] * 0.01
            data["Stock"] += stock_data[stock_name].tail(1)["Close"][-1] * 0.01
        else:
            pass
    # 判断卖出信号
    elif short_moving_average < long_moving_average:
        if data["Stock"] > 0:
            # 卖出股票
            data["Cash"] += stock_data[stock_name].tail(1)["Close"][-1] * 0.01
            data["Stock"] -= stock_data[stock_name].tail(1)["Close"][-1] * 0.01
        else:
            pass

# 模拟交易
for i in range(len(stock_data)-1):
    # 计算每日收益
    daily_return = (stock_data["Close"][i+1] - stock_data["Close"][i]) / stock_data["Close"][i]
    # 更新模拟盘
    trading_strategy(stock_data.iloc[i+1], "AAPL", initial_investment)
    # 计算现金和股票余额
    cash = stock_data.iloc[i+1]["Cash"]
    stock = stock_data.iloc[i+1]["Stock"]
    # 打印余额
    print("Day {}: Cash = {}, Stock = {}".format(i+1, cash, stock))

# 计算总收益
total_return = (initial_investment + cash) / initial_investment
print("Total Return: {:.2%}".format(total_return))

在这个示例中,我们首先使用yfinance库下载了苹果公司的股票历史数据,然后计算了每日收益率。我们还定义了一个交易策略,该策略计算了短期和长期移动平均线,如果短期移动平均线高于长期移动平均线,则买入股票;如果短期移动平均线低于长期移动平均线,则卖出股票。最后,我们使用这个交易策略模拟交易,并计算了总收益。
请注意,这只是一个简单的示例,实际的股票交易可能需要考虑更多的因素,例如交易费用、滑点、市场波动性等。此外,这个示例也没有考虑任何风险控制策略,例如止损订单、对冲等。

相关文章
|
20天前
|
机器学习/深度学习 算法 调度
【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)
【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)
|
2月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
65 4
|
4月前
|
数据可视化 数据挖掘 数据安全/隐私保护
Python实现时间序列动量策略:波动率标准化让量化交易收益更平稳
时间序列动量策略(TSMOM)是一种基于资产价格趋势的量化交易方法,通过建立多头或空头头寸捕捉市场惯性。然而,传统TSMOM策略因风险敞口不稳定而面临收益波动问题。波动率调整技术通过动态调节头寸规模,维持恒定风险水平,优化了策略表现。本文系统分析了波动率调整TSMOM的原理、实施步骤及优势,强调其在现代量化投资中的重要地位,并探讨关键参数设定与实际应用考量,为投资者提供更平稳的风险管理体验。
150 4
Python实现时间序列动量策略:波动率标准化让量化交易收益更平稳
|
3月前
|
网络协议 API Python
解析http.client与requests在Python中的性能比较和改进策略。
最后,需要明确的是,这两种库各有其优点和适用场景。`http.client` 更适合于基础且并行的请求,`requests` 则因其易用且强大的功能,更适用于复杂的 HTTP 场景。对于哪种更适合你的应用,可能需要你自己进行实际的测试来确定。
109 10
|
3月前
|
测试技术 Python
Python测试报告生成:整合错误截图,重复用例执行策略,调整测试顺序及多断言机制。
如何组织这一切呢?你可以写一本名为“Python测试之道”的动作指南手册,或者创建一个包含测试策略、测试顺序、多断言机制的脚本库。只要你的测试剧本编写得足够独到,你的框架就会像一位执行任务的超级英雄,将任何潜伏于代码深处的错误无情地揪出来展现在光天化日之下。这些整理好的测试结果,不仅有利于团队协作,更像冒险故事中的精彩篇章,带给读者无尽的探索乐趣和深刻的思考。
99 10
|
4月前
|
数据采集 前端开发 JavaScript
Python爬虫如何应对网站的反爬加密策略?
Python爬虫如何应对网站的反爬加密策略?
244 11
|
4月前
|
数据采集 Web App开发 前端开发
Python+Selenium爬虫:豆瓣登录反反爬策略解析
Python+Selenium爬虫:豆瓣登录反反爬策略解析
|
数据采集 JSON JavaScript
Python爬虫案例:抓取猫眼电影排行榜
python爬取猫眼电影排行榜数据分析,实战。(正则表达式,xpath,beautifulsoup)【2月更文挑战第11天】
536 2
Python爬虫案例:抓取猫眼电影排行榜
|
11月前
|
数据采集 前端开发 NoSQL
Python编程异步爬虫实战案例
Python编程异步爬虫实战案例
236 2
|
数据采集 前端开发 Java
Python简单爬虫案例
用pyhton从网页中爬取数据,是比较常用的爬虫方式。网页一般由html编写,里面包含大量的标签,我们所需的内容都包含在这些标签之中,除了对python的基础语法有了解之外,还要对html的结构以及标签选择有简单的认知,下面就用爬取fl小说网的案例带大家进入爬虫的世界。

热门文章

最新文章

推荐镜像

更多