R语言Apriori关联规则、kmeans聚类、决策树挖掘研究京东商城网络购物用户行为数据可视化

简介: R语言Apriori关联规则、kmeans聚类、决策树挖掘研究京东商城网络购物用户行为数据可视化

全文链接:http://tecdat.cn/?p=30360


随着网络的迅速发展,依托于网络的购物作为一种新型的消费方式,在全国乃至全球范围内飞速发展点击文末“阅读原文”获取完整代码数据


电子商务成为越来越多消费者购物的重要途径。我们被客户要求撰写关于网络购物行为的研究报告。

项目计划使用数据挖掘的方法,以京东商城网购用户的网络购物数据为基础,对网络购物行为的三个要素:行为过程、行为结果、行为主体进行分析。

(1)使用关联规则分析方法分析网络购物用户的行为过程,分别探析信誉度、搜索排名对网购用户购买决策的影响程度;

(2)使用聚类分析方法,对网购用户的行为结果进行讨论,发现不同网购群体的网购习惯和特征;

(3)使用分类/预测分析方法,对网购行为主体进行研究。本项目还将引用其它研究的数据及观点对本数据分析所得结论进行比较验证。


本项目的结论为以京东商城为代表的网购平台运营商、商家提供网站管理、网店运营方面的参考,为商家制定网络营销策略提供决策支持。


关联规则挖掘


data1[,i]=as.factor(data1[,i])##将每个变量转成因子形式
}
inspect(frequentsets[1:10])#查看频繁项集

从上面的表 可以看到部分频繁出现的一些选项规则,抽取的10个频繁项集的支持度在0.3左右。

然后查看支持度最高的前10个规则

可以看到支持度最高的前十个选项集合(称为频繁项集)的支持度在0.9左右,因此在下面使用apriori模型对数据进行分析时,选取最小支持度为0.9左右,以便发现合适数量的规则。

set of 47 rules
 
rule length distribution (lhs + rhs):sizes
 1  2  3
11 24 12
 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  1.000   2.000   2.000   2.021   2.500   3.000
 
summary of quality measures:
    support         confidence          lift      
 Min.   :0.9000   Min.   :0.9000   Min.   :0.9977 
 1st Qu.:0.9050   1st Qu.:0.9400   1st Qu.:1.0000 
 Median :0.9150   Median :0.9585   Median :1.0043 
 Mean   :0.9191   Mean   :0.9572   Mean   :1.0043 
 3rd Qu.:0.9300   3rd Qu.:0.9846   3rd Qu.:1.0083 
 Max.   :0.9850   Max.   :0.9945   Max.   :1.0141 
 
mining info:
  data ntransactions support confidence
 trans           200     0.9        0.3

我们得到规则的概述,可以看到他们的支持度在0.9到0.98之间,置信度也非常高,说明这些规则具有较高的的可预测度(Predictability)。因此从这些规则可以得到比较可靠的推断结论。置信度太低的规则在实际应用中也不会有多大用处。

从规则中剔除掉其他选项的规则后,我们得到以上的规则,从以上规则,我们可以看出网购用户大多通过论坛或者社区的弹窗信息进入网购的页面,他们在论坛中看到了某些用户的评论,并且通过弹窗信息进入购买,而他们选择网购的原因也是因为评论真实性,看到了其他网购的用户经验从而影响他们的购买决策。


对规则进行可视化


plot(rules, method="grouped")

上图表示支持度和置信度的二维散点图,从上图来看,规则的置信度和支持度较高,大部分规则位于左上方,说明规则大多有较高的置信度,具有较好的可信性。

上图表示规则前项和规则后项的联系,图中的点越大表示规则的支持度越高,可以看到规则中社区论坛进入购买页面和选择网购原因是评论真实之间有较高的支持度。

上图是一个规则的网络图表示,箭头表示规则之间的递推关系。从上图我们也可以直观地看到我们得到的规则。


点击标题查阅往期内容


实现LDA主题模型分析网购满意度数据


01

02

03

04


d=dist(data2)#对数据的样本求欧几里得距离
 
hmod=hclust(d)#使用欧几里得距离对样本进行层次聚类

从树状图的结果来看,使用高度为60左右对树状图进行横截,所有样本大致可以分成4类。

cent <- rbind(cent, colMeans(data2[memb == k, , drop = FALSE]))#筛选出第4层次以上的样本
}
hc1 <- hclust(dist(cent)^2, method = "cen", members = table(memb))#重新对新样本进行层次聚类
opar <- par(mfrow = c(1, 2))

上图是对树重新进行层次聚类的结果与原来树的对比,从左边 我们可以i看到,树具有4个分支,因此可以认为样本大致可以聚成4类。


kmeans聚类


fitted(kc);  #查看具体聚类情况 
 
#聚类结果可视化  
plot(data2[,c(1:20)], col = kc$cluster);  #不同的颜色代表不同的聚类结果。

上图表示不同问题选项之间样本的聚类情况,不同的颜色代表不同的样本,可以看到不同颜色的类别分别聚到了不同的类中,因此类别之间的区分效果良好。

可以看到红色类用户的Q2,Q7,Q11得分较高Q4得分较低,Q21得分较高,蓝色用户Q10Q23的得分较高,黑色用户的得分分布比较普遍,在每个问题中不同选项均有分布。绿色用户Q2,Q19得分较低,Q10的得分较高。

可以看到红色用户大多是年龄较大,4线城市的用户,接触网购不多,因此也不会使用手机电脑网络等方式进入网购页面。蓝色用户代表接触网购时间较长的用户,他们进入网络页面的方式大多是搜索引擎,他们大多熟悉网购操作,对自己需要的商品也比较熟悉,然而一般对网购不进行评论,除非对商品非常满意。绿色是年龄较小的用户,但是他们接触网络的时间也较长,大多是青少年,因此接触新兴事物的兴趣较大,因此他们的网购花费较低,但是网购的频率较高。


决策树


将Q30_总体而言,您对网购是否满意?的答案作为网购用户分类的分类目标属性,使用其他属性作为分类属性,对数据进行分类

draw.tree(CARTmodel)
## 交叉验证的估计误差(“xerror”列),以及标准误差(“xstd”列),平均相对误差=xerror±xstd 
printcp(CARTmodel)

> CARTmodel$cptable[which.min(CARTmodel$cptable[,"xerror"]),"CP"]
[1] 0.04938272

根据最小误差的最小变异系数来对树进行剪枝。

得到剪枝后的决策树。

从决策树图来看 ,我们可以发现问题的选项作为决策树的分支,分别将年龄,网购历史,网站购物主要看重的因素,喜欢的促销方式和网购花费作为决策条件,将样本分成了8个类别。

并使用决策树进行对样本的预测。

> table(pre,data2$Q30)#混淆矩阵
  
pre  3  4  5  6
  3 20  9  2  0
  4  9 74  9  1
  5  6 13 34  0
  6  0  0  0  0

从混淆矩阵的结果来看,对4个类别的预测效果较好,说明模型的拟合效果良好。

相关文章
|
10天前
|
数据可视化 算法 安全
员工上网行为管理软件:S - PLUS 在网络统计分析中的应用
在数字化办公环境中,S-PLUS 员工上网行为管理软件通过精准的数据收集、深入的流量分析和直观的可视化呈现,有效帮助企业管理员工上网行为,保障网络安全和提高运营效率。
20 1
|
25天前
|
机器学习/深度学习 数据采集 人工智能
R语言是一种强大的编程语言,广泛应用于统计分析、数据可视化、机器学习等领域
R语言是一种广泛应用于统计分析、数据可视化及机器学习的强大编程语言。本文为初学者提供了一份使用R语言进行机器学习的入门指南,涵盖R语言简介、安装配置、基本操作、常用机器学习库介绍及实例演示,帮助读者快速掌握R语言在机器学习领域的应用。
52 3
|
6月前
|
监控 安全 数据可视化
如何使用这些上网行为管理软件一键管控员工网络
使用WorkWin、Hubstaff和Veriato等上网行为管理软件,企业可以有效监控和提升员工工作效率。这些工具提供实时员工监控、时间统计、移动部署、权限控制、远程管理及安全监控等功能,确保工作安全,优化时间分配,防止数据泄露,并通过任务追踪促进项目进展。通过生成报告和分析,企业能识别生产力瓶颈和安全风险,从而制定改进策略。
145 3
|
3月前
|
数据可视化
R语言可视化设计原则:打造吸引力十足的数据可视化
【8月更文挑战第30天】R语言可视化设计是一个综合性的过程,需要综合运用多个设计原则来创作出吸引力十足的作品。通过明确目标、选择合适的图表类型、合理运用色彩与视觉层次、明确标注与引导视线以及引入互动性与动态效果等原则的应用,你可以显著提升你的数据可视化作品的吸引力和实用性。希望本文能为你提供一些有益的启示和帮助。
|
3月前
|
机器学习/深度学习 监控 算法
基于深度学习网络的人员行为视频检测系统matlab仿真,带GUI界面
本仿真展示了基于GoogLeNet的人员行为检测系统在Matlab 2022a上的实现效果,无水印。GoogLeNet采用创新的Inception模块,高效地提取视频中人员行为特征并进行分类。核心程序循环读取视频帧,每十帧执行一次分类,最终输出最频繁的行为类别如“乐队”、“乒乓球”等。此技术适用于智能监控等多个领域。
70 4
|
4月前
|
JSON 数据挖掘 API
在会议系统工程中,Python可以用于多种任务,如网络请求(用于视频会议的连接和会议数据的传输)、数据分析(用于分析会议参与者的行为或会议效果)等。
在会议系统工程中,Python可以用于多种任务,如网络请求(用于视频会议的连接和会议数据的传输)、数据分析(用于分析会议参与者的行为或会议效果)等。
|
5月前
|
监控 网络协议 安全
Verilog代码在上网行为管理软件中的网络设备控制与协议分析
**Verilog摘要:** Verilog是硬件描述语言,用于数字电路设计和网络设备控制。它在上网行为管理软件中用于控制路由器、交换机等,例如通过简单模块控制端口状态。此外,Verilog还支持协议分析,如解析以太网帧提取MAC地址。监控数据可结合Verilog实现自动化提交,例如通过HTTP发送请求到服务器,实现实时监控和响应。这些示例展示了Verilog在网络安全和性能优化中的应用潜力。
122 1
|
6月前
|
域名解析 缓存 监控
【域名解析 DNS 专栏】DNS 查询日志分析:洞察网络行为与优化建议
【5月更文挑战第28天】DNS查询日志分析对于理解和优化网络行为至关重要。通过日志,可洞察用户访问偏好、流量分布,进而进行缓存优化、负载均衡和安全检测。简单Python代码示例展示了如何读取和分析日志。根据分析结果,可针对性设置优化策略,提升网络性能、稳定性和安全性。不断探索新的分析方法,充分挖掘DNS查询日志的价值,以驱动网络持续优化。
327 3
|
6月前
|
监控 安全 网络安全
网络安全行为可控定义以及表现内容简述
网络安全行为可控定义以及表现内容简述
95 1
|
6月前
|
监控 算法
使用Lua实现上网行为管理软件的网络速度限制器
本文介绍了如何使用Lua编程语言实现简单的网络速度限制器,适用于公共场所和企业网络。通过Lua代码示例展示了设置网络速度限制、监控网络流量以及自动将监控数据提交到网站的功能。该方法有助于管理员有效管理网络资源,提高效率。实际应用中可进一步扩展和优化以适应不同环境和需求。
175 6
下一篇
无影云桌面