知识图谱算法有哪些

简介: 知识图谱是以图结构描述的知识。与传统数据库相比,知识图谱在存储、查询、检索方面具有诸多优势。传统数据库对数据的组织是以字段为单位,而知识图谱通过关系、属性和实体等数据类型,将数据组织成复杂的图,使其更容易理解。

知识图谱是以图结构描述的知识。与传统数据库相比,知识图谱在存储、查询、检索方面具有诸多优势。传统数据库对数据的组织是以字段为单位,而知识图谱通过关系、属性和实体等数据类型,将数据组织成复杂的图,使其更容易理解。

由于关系和属性在知识图谱中占据非常重要的位置,因此,在进行知识图谱构建时需要使用专门的算法来实现对实体和属性的计算,即知识图谱算法。

知识图谱算法-实体识别
实体识别是指将给定的文本中的实体识别出来,并对识别出的实体进行分类的过程。实体识别算法可以分为基于规则的方法和基于机器学习方法。

基于规则的实体识别方法:通过对文本中的字符串进行分析,根据分析结果判断给定文本中是否有对应的实体。典型的规则是把一串字符串看成一个句子,根据句子中所包含实体的数量和种类,判断其中是否存在对应的实体。

基于机器学习方法:利用统计机器学习方法对文本中的实体进行识别。

知识图谱算法-关系抽取
关系抽取是一种针对给定实体对的实体关系提取,主要包括实体识别和关系抽取。 实体识别是将知识图谱中的实体与数据库中的相应实体进行匹配,识别出知识图谱中的实体。关系抽取是将知识图谱中的知识与关系进行匹配,判断知识图谱中两个概念之间的关系。

从知识图谱中抽取出的知识与领域相关,通常称为领域本体。领域本体是在理解领域的基础上,根据特定需求设计出来的表示领域内概念及其相互之间关系的抽象数据结构。

知识图谱算法-属性计算
属性计算是知识图谱中非常重要的一个任务,主要是根据已有的知识库,计算实体或属性的值。通过将知识库中的知识与已有数据进行比对,以获取知识的准确值,并在此基础上,对知识库中的新数据进行计算。

知识图谱算法-知识融合
知识融合是将两个或多个领域的知识进行融合,构建新的知识图谱。知识融合有以下几种主要类型:1)不同领域之间的知识融合;2)不同来源之间的知识融合;3)领域内部知识的融合;4)跨领域、跨语言的知识融合。

知识图谱算法-知识推理
知识推理是指从给定的知识中提取规则,并利用这些规则来推断出未知的事实的过程。知识推理通常分为以下几个步骤: (1)对已知知识进行分类和识别,提取出对应的规则; (2)根据规则设计推理算法,通过对数据的学习,实现对新数据的推理; (3)将新数据加入到已知知识库中,并重新训练模型。

目前知识图谱构建常用的算法有三种:基于规则的方法、基于机器学习的方法和基于图论的方法。这三种方法都各有特点。不同知识图谱算法适用于不同的应用场景。例如,基于规则的方法适合于已经有明确规则定义和模型描述的应用场景,而基于机器学习方法适合于没有明确规则定义和模型描述的应用场景。

悦数图数据库能够满足大规模实体、关系和属性的建模与存储要求,能够在大规模实体之间的复杂多维度关系的快速查询与更新,并与人工智能、自然语言处理等技术相融合,实现各种智能应用。

相关文章
|
机器学习/深度学习 自然语言处理 算法
特定领域知识图谱融合方案:文本匹配算法(Simnet、Simcse、Diffcse)
文本匹配任务在自然语言处理中是非常重要的基础任务之一,一般研究两段文本之间的关系。有很多应用场景;如信息检索、问答系统、智能对话、文本鉴别、智能推荐、文本数据去重、文本相似度计算、自然语言推理、问答系统、信息检索等,但文本匹配或者说自然语言处理仍然存在很多难点。这些自然语言处理任务在很大程度上都可以抽象成文本匹配问题,比如信息检索可以归结为搜索词和文档资源的匹配,问答系统可以归结为问题和候选答案的匹配,复述问题可以归结为两个同义句的匹配。
特定领域知识图谱融合方案:文本匹配算法(Simnet、Simcse、Diffcse)
|
人工智能 自然语言处理 算法
基于知识图谱的电影知识问答系统:训练TF-IDF 向量算法和朴素贝叶斯分类器、在 Neo4j 中查询
基于知识图谱的电影知识问答系统:训练TF-IDF 向量算法和朴素贝叶斯分类器、在 Neo4j 中查询
基于知识图谱的电影知识问答系统:训练TF-IDF 向量算法和朴素贝叶斯分类器、在 Neo4j 中查询
|
自然语言处理 算法 NoSQL
手把手教学小型金融知识图谱构建:量化分析、图数据库neo4j、图算法、关系预测、命名实体识别、Cypher Cheetsheet详细教学等
手把手教学小型金融知识图谱构建:量化分析、图数据库neo4j、图算法、关系预测、命名实体识别、Cypher Cheetsheet详细教学等
手把手教学小型金融知识图谱构建:量化分析、图数据库neo4j、图算法、关系预测、命名实体识别、Cypher Cheetsheet详细教学等
|
机器学习/深度学习 自然语言处理 算法
文档关键信息提取形成知识图谱:基于NLP算法提取文本内容的关键信息生成信息图谱教程及码源(含pyltp安装使用教程)
文档关键信息提取形成知识图谱:基于NLP算法提取文本内容的关键信息生成信息图谱教程及码源(含pyltp安装使用教程)
文档关键信息提取形成知识图谱:基于NLP算法提取文本内容的关键信息生成信息图谱教程及码源(含pyltp安装使用教程)
|
机器学习/深度学习 数据采集 存储
特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案:技术知识前置【一】-文本匹配算法、知识融合学术界方案、知识融合业界落地方案、算法测评KG生产质量保障
本项目主要围绕着特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案:技术知识前置【一】-文本匹配算法、知识融合学术界方案、知识融合业界落地方案、算法测评KG生产质量保障讲解了文本匹配算法的综述,从经典的传统模型到孪生神经网络“双塔模型”再到预训练模型以及有监督无监督联合模型,期间也涉及了近几年前沿的对比学习模型,之后提出了文本匹配技巧提升方案,最终给出了DKG的落地方案。这边主要以原理讲解和技术方案阐述为主,之后会慢慢把项目开源出来,一起共建KG,从知识抽取到知识融合、知识推理、质量评估等争取走通完整的流程。
特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案:技术知识前置【一】-文本匹配算法、知识融合学术界方案、知识融合业界落地方案、算法测评KG生产质量保障
|
机器学习/深度学习 自然语言处理 算法
特定领域知识图谱融合方案:文本匹配算法之预训练Simbert、ERNIE-Gram单塔模型等诸多模型【三】
文本匹配任务在自然语言处理中是非常重要的基础任务之一,一般研究两段文本之间的关系。有很多应用场景;如信息检索、问答系统、智能对话、文本鉴别、智能推荐、文本数据去重、文本相似度计算、自然语言推理、问答系统、信息检索等,但文本匹配或者说自然语言处理仍然存在很多难点。这些自然语言处理任务在很大程度上都可以抽象成文本匹配问题,比如信息检索可以归结为搜索词和文档资源的匹配,问答系统可以归结为问题和候选答案的匹配,复述问题可以归结为两个同义句的匹配。
特定领域知识图谱融合方案:文本匹配算法之预训练Simbert、ERNIE-Gram单塔模型等诸多模型【三】
|
机器学习/深度学习 人工智能 自然语言处理
阿里巴巴资深算法专家张伟:百科类知识图谱构建和应用已到深水区,行业和多模态知识图谱引关注
知识图谱是近年来人工智能技术蓬勃发展的核心驱动力之一,已广泛应用在金融、电商、医疗、政务等众多领域,经过短短几年的发展,热度依旧不减,未来,知识图谱又将面临哪些新的挑战?又有哪些发展趋势呢?
|
机器学习/深度学习 数据采集 自然语言处理
EasyNLP集成K-BERT算法,借助知识图谱实现更优Finetune
EasyNLP集成K-BERT算法,,使⽤户在具有知识图谱的情况下,取得更好的模型Finetune效果。
|
算法 数据挖掘 数据处理
知识图谱 | Neo4j算法概述
在neo4j中,Neo4j Graph Algorithms ,通过call algo.list() 可查看neo4j中的算法列表。 在neo4j官方文档中,主要记录如下各种方法: 一. 中心性算法(Centrality algorithms) 中心度算法主要用来判断一个图中不同节点的重要性: PageRank(页面排名算法,algo.pageRank),pagerank值越高的实体在网络中起到的作用越大; ArticleRank(文档排名算法,algo.articleRank),pagerank的一种变体,平衡了出度高低对重要性的影响;
934 0
|
机器学习/深度学习 人工智能 自然语言处理
【阿里巴巴搜索推荐事业部】招聘知识图谱、自然语言处理算法专家
我们旨在打造全球最大的中文电商知识图谱,支持包括淘宝、天猫乃至海外电商在内整个阿里集团的推荐、搜索、广告业务,每天服务上亿用户。从电商场景下的用户需求出发,打造一个连接商品,用户,知识,乃至各类开放领域知识、常识的大规模语义网络,并且在此基础上研究新一代基于知识图谱的智能搜索、推荐、问答技术。 我们已正式发布阿里电商知识图谱AliCoCo(Alibaba E-Commerce Cognitive Concept Net)于SIGMOD,也是阿里知识图谱首次在国际顶会上正式披露大规模领域知识图谱。
2491 0
【阿里巴巴搜索推荐事业部】招聘知识图谱、自然语言处理算法专家