hummingbird,一个非常好用的 Python 库!

简介: hummingbird,一个非常好用的 Python 库!


前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站零基础入门的AI学习网站~。


前言

随着人工智能和机器学习的快速发展,将训练好的模型部署到生产环境中成为了一个重要的任务。而边缘计算设备,如智能手机、嵌入式系统和物联网设备,也需要能够运行机器学习模型以进行实时推理。Python Hummingbird 是一个强大的工具,可以轻松地将机器学习模型部署到边缘设备。本文将详细介绍 Python Hummingbird 的使用方法,并提供丰富的示例代码。

什么是 Python Hummingbird?

Python Hummingbird 是一个用于将机器学习模型部署到边缘设备的工具。它的目标是简化模型的转换和部署过程,使开发人员能够轻松地在边缘设备上运行训练好的模型。Python Hummingbird 支持多种机器学习框架,包括 Scikit-Learn、XGBoost、LightGBM、ONNX 和 PyTorch,因此可以使用最喜欢的框架来训练模型,并将其部署到边缘设备上。

安装 Python Hummingbird

要开始使用 Python Hummingbird,首先需要安装它。

可以使用 pip 包管理器来安装 Python Hummingbird:

pip install hummingbird-ml

安装完成后,就可以开始将机器学习模型部署到边缘设备了。


将 Scikit-Learn 模型转换为 Python Hummingbird 格式


首先看一个示例,将 Scikit-Learn 模型转换为 Python Hummingbird 格式,并将其部署到边缘设备上。假设有一个 Scikit-Learn 的决策树分类器,想将其部署到边缘设备以进行实时分类。


首先,创建一个示例的 Scikit-Learn 决策树分类器:

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
 
# 加载示例数据集
data = load_iris()
X, y = data.data, data.target
 
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 
# 创建并训练决策树分类器
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)
 
# 在测试集上进行预测
y_pred = clf.predict(X_test)
 
# 计算分类准确度
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')

现在,已经有了一个训练好的 Scikit-Learn 决策树分类器。接下来,使用 Python Hummingbird 将其转换为可在边缘设备上运行的格式:

from hummingbird.ml import convert
 
# 将 Scikit-Learn 模型转换为 Python Hummingbird 格式
model = convert(clf, 'torch')
 
# 可以将 model 保存到文件以供后续部署使用
model.save('decision_tree.hbm')

在上述代码中,使用了 hummingbird.ml.convert 函数将 Scikit-Learn 模型转换为 Python Hummingbird 格式。然后,可以将转换后的模型保存到文件中,以便将其部署到边缘设备上。


在边缘设备上运行 Python Hummingbird 模型

现在,看看如何在边缘设备上运行 Python Hummingbird 模型。首先,需要在目标设备上安装 Python Hummingbird,然后可以加载之前保存的 Python Hummingbird 模型并在设备上运行推理。


以下是一个示例代码,演示如何在边缘设备上加载 Python Hummingbird 模型并使用它进行实时推理:

from hummingbird.ml import load
 
# 在边缘设备上加载 Python Hummingbird 模型
model = load('decision_tree.hbm')
 
# 准备输入数据
input_data = [5.1, 3.5, 1.4, 0.2]  # 以 Iris 数据集的特征为例
 
# 使用模型进行推理
output_data = model.predict(input_data)
 
print(f'Predicted class: {output_data}')

在这个示例中,首先加载了之前保存的 Python Hummingbird 模型,然后准备了输入数据,并使用模型进行了推理。这能够在边缘设备上运行训练好的机器学习模型,而无需依赖云端服务或高性能服务器。


支持的机器学习框架和模型类型


Python Hummingbird 支持多种机器学习框架和模型类型,包括但不限于:


Scikit-Learn 模型(包括分类、回归、聚类等)


XGBoost 和 LightGBM 模型


ONNX 模型


PyTorch 模型


这使得 Python Hummingbird 成为一个强大的工具,可以用于各种不同的机器学习任务和模型类型。

实际应用场景

Python Hummingbird 可以在许多实际应用场景中发挥作用,其中包括但不限于:

1. 物联网设备

在物联网设备上运行机器学习模型,用于实时数据分析和决策制定。例如,在智能家居设备中使用图像识别模型来检测人脸或动作。

# 在物联网设备上加载 Python Hummingbird 模型
model = load('image_recognition_model.hbm')
 
# 捕获图像并使用模型进行识别
image_data = capture_image()
result = model.predict(image_data)

2. 移动应用

在移动应用程序中使用机器学习模型,以提供个性化的推荐、图像识别和自然语言处理等功能。例如,在移动社交媒体应用中使用情感分析模型来分析用户的帖子和评论。

# 在移动应用中加载 Python Hummingbird 模型
model = load('sentiment_analysis_model.hbm')
 
# 分析用户发表的评论
user_comment = get_user_comment()
sentiment = model.predict(user_comment)


3. 嵌入式系统

在嵌入式系统中运行机器学习模型,以控制和优化设备的行为。例如,在自动驾驶汽车中使用计算机视觉模型来检测障碍物和标志。

# 在嵌入式系统中加载 Python Hummingbird 模型
model = load('object_detection_model.hbm')
 
# 使用模型进行障碍物检测
image_data = capture_image()
obstacles = model.predict(image_data)


总结

Python Hummingbird 是一个强大的工具,可以将机器学习模型轻松部署到边缘设备中,实现实时推理和决策。本文介绍了 Python Hummingbird 的安装和使用方法,并提供了示例代码,以演示如何将 Scikit-Learn 模型转换为 Python Hummingbird 格式并在边缘设备上运行模型。同时,还探讨了 Python Hummingbird 在物联网设备、移动应用和嵌入式系统等实际应用场景中的潜在用途。希望本文能够帮助大家更好地理解和使用 Python Hummingbird,以满足各种机器学习部署需求。


相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
4天前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
44 20
|
1月前
|
XML JSON 数据库
Python的标准库
Python的标准库
170 77
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
129 4
数据分析的 10 个最佳 Python 库
|
1月前
|
XML JSON 数据库
Python的标准库
Python的标准库
52 11
|
2月前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
151 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
2月前
|
XML 存储 数据库
Python中的xmltodict库
xmltodict是Python中用于处理XML数据的强大库,可将XML数据与Python字典相互转换,适用于Web服务、配置文件读取及数据转换等场景。通过`parse`和`unparse`函数,轻松实现XML与字典间的转换,支持复杂结构和属性处理,并能有效管理错误。此外,还提供了实战案例,展示如何从XML配置文件中读取数据库连接信息并使用。
Python中的xmltodict库
|
1月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
74 8
|
2月前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
112 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
1月前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
44 4
|
2月前
|
测试技术 Python
Python中的异步编程与`asyncio`库
Python中的异步编程与`asyncio`库

热门文章

最新文章