PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享(下)

简介: PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享

PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享(上):https://developer.aliyun.com/article/1492254


基于对我们有用的 WOE 分析变量是:pdays、previous、job、housing、balance、month、duration、poutcome、contact。

在下一步中,我们决定根据 WOE 结果和变量的先前结果删除无用的列。

我们删除的其中一个列是 poutcome,尽管它的 WOE 很高,但我们决定删除它,因为从 prevois 分析中我们看到它有许多未知的观察结果。

在可变持续时间的情况下,我们也可以看到WOE相当大,甚至可以说这个结果有点可疑。我们决定根据 WOE 结果放弃它,因为我们的模型应该根据过去的数据说明是否建议给某个人打电话。

在可变接触的情况下,我们放弃了它,因为对我们来说,接触形式在我们的模型中没有用。

我们还删除了变量 day 因为它对我们没有用,因为这个变量代表天数,而该变量的 WOE 非常小。我们删除的最后一个变量是变量 pdays,尽管这个变量 WOE 的结果非常好,但它对我们来说并不是一个有用的变量。

我们分析中剩下的列:


特征选择和工程


要执行我们的算法,我们首先需要将字符串更改为二进制变量。

data = pd.get_dummies(data=data, columns = \['job', 'marital', 'education' , 'month'\], \
                                   prefix = \['job', 'marital', 'education' , 'month'\])

我们更改了列的名称。

data.head(5)

创建虚拟变量后,我们进行了 Pearson 相关。

age = pearsonr(data\['age'\], data\['y'\])

sns.heatmap(corr

我们选择了数字列来检查相关性。正如我们所看到的,没有相关性。

我们查看因变量和连续变量之间的关系。

pylab.show()


交叉验证


经过所有准备工作,我们终于可以将数据集拆分为训练集和测试集。


算法的实现


逻辑回归

K=5
kf = KFold(n_splits=K, shuffle=True)
logreg = LogisticRegression()
\[\[7872   93\]
 \[ 992   86\]\]

\[\[7919   81\]
 \[ 956   86\]\]

\[\[7952   60\]
 \[ 971   59\]\]

\[\[7871   82\]
 \[1024   65\]\]

\[\[7923   69\]
 \[ 975   75\]\]

决策树

dt2 = tree.DecisionTreeClassifier(random\_state=1, max\_depth=2)
\[\[7988    0\]
 \[1055    0\]\]

\[\[7986    0\]
 \[1056    0\]\]

\[\[7920   30\]
 \[1061   31\]\]

\[\[8021    0\]
 \[1021    0\]\]

\[\[7938   39\]
 \[1039   26\]\]

随机森林

random_forest = RandomForestClassifier
\[\[7812  183\]
 \[ 891  157\]\]

\[\[7825  183\]
 \[ 870  164\]\]

\[\[7774  184\]
 \[ 915  169\]\]

\[\[7770  177\]
 \[ 912  183\]\]

\[\[7818  196\]
 \[ 866  162\]\]

KNN近邻

classifier = KNeighborsClassifier(n_neighbors =13,metric = 'minkowski' , p=2)
print("Mean accuracy: ",accuracyknn/K)
print("The best AUC: ", bestaucknn)
\[\[7952   30\]
 \[1046   15\]\]

\[\[7987   30\]
 \[1010   15\]\]

\[\[7989   23\]
 \[1017   13\]\]

\[\[7920   22\]
 \[1083   17\]\]

\[\[7948   21\]
 \[1052   21\]\]

高斯朴素贝叶斯

kf = KFold(n_splits=K, shuffle=True)
gaussian = GaussianNB()
\[\[7340  690\]
 \[ 682  331\]\]

\[\[7321  633\]
 \[ 699  389\]\]

\[\[7291  672\]
 \[ 693  386\]\]

\[\[7300  659\]
 \[ 714  369\]\]

\[\[7327  689\]
 \[ 682  344\]\]

``````
models = pd.DataFrame({
    'Model': \['KNN', 'Logistic Regression', 
              'Naive Bayes', 'Decision Tree','Random Forest'\],
    'Score': \[ accuracyknn/K, accuracylogreg/K, 
              accuracygnb/K, accuracydt/K, accuracyrf/K\],
    'BestAUC': \[bestaucknn,bestauclogreg,bestaucgnb,
                bestaucdt,bestaucrf\]})

我们看到根据 AUC 值的最佳模型是朴素贝叶斯我们不应该太在意最低的 R2 分数,因为数据非常不平衡(很容易预测 y=0)。在混淆矩阵中,我们看到它预测了漂亮的价值真正值和负值。令我们惊讶的是,决策树的 AUC 约为 50%。


欠采样


我们尝试对变量 y=0 进行欠采样

gTrain, gValid = train\_test\_split

逻辑回归

predsTrain = logreg.predict(gTrainUrandom)

predsTrain = logreg.predict(gTrain20Urandom)

predsTrain = logreg.predict(gTrrandom)

决策树

print("Train AUC:", metrics.roc\_auc\_score(ygTrds))

随机森林

print("Train AUC:", metrics.roc\_auc\_score(ygTr, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygVd, preds))

KNN近邻

print("Train AUC:", metrics.roc\_auc\_score(ygTrm, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygVal10, preds))

高斯朴素贝叶斯

print("Train AUC:", metrics.roc\_auc\_score(ygTraom, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygid, preds))

过采样


我们尝试对变量 y=1 进行过采样

feates = datolist()
print(feures)
feaes.remove('y')

print(gTrainOSM.shape)
(31945, 39)
``````
smt = SMOT
(32345, 39)
``````
smt = SMOT
(32595, 39)
``````
ygTrain10OSM=gTrain10OSM\['y'\]
gTrain10OSM=gTrain10OSM.drop(columns=\['y'\])

逻辑回归

print("Train AUC:", metrics.roc\_auc\_score(ygTrin10SM, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygValid, preds))

决策树

dt2.fit(,ygTranOS)
predsTrain = dtpreict(TrainOSM)
preds = dt2.predict(gValid)

随机森林

random_forest.fit(rainOSM, ygTranOS)
predsTrain = random_forest.prect(gTraiOSM)
p

KNN近邻

classifier.fit(granOSM, yTanOSM)
predsTrain = classifier.predict(gTaiSM)
preds = classifier.predict(Vaid)

高斯朴素贝叶斯

gaussian.fit(gTriOM, ygrainM)
predsTrain = gaussian.predcti)

结论


我们看到欠采样和过采样变量 y 对 AUC 没有太大帮助。

相关文章
|
13天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
49 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
16天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
35 2
|
18天前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
22 2
|
18天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
33 1
|
18天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
43 1
|
24天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
36 3
|
29天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
32 1
|
2月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
23 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
下一篇
无影云桌面